首页 | 官方网站   微博 | 高级检索  
     

室温合成非晶三硫化钼析氢催化剂的性能调制以及其在串联制氢器件中的应用
引用本文:晋中华,刘伯飞,梁俊辉,王宁,张奇星,刘彩池,赵颖,张晓丹.室温合成非晶三硫化钼析氢催化剂的性能调制以及其在串联制氢器件中的应用[J].物理学报,2016,65(11):118801-118801.
作者姓名:晋中华  刘伯飞  梁俊辉  王宁  张奇星  刘彩池  赵颖  张晓丹
作者单位:1. 河北工业大学材料科学与工程学院, 天津 300130; 2. 南开大学光电子薄膜器件与技术研究所, 光电子薄膜器件与技术天津市重点实验室, 光电信息技术科学教育部重点实验室, 天津 300071
基金项目:科技部国际合作项目(批准号: 2014DFE60170)和高等学校博士学科点专项科研基金(批准号: 20120031110039)资助的课题.
摘    要:高催化活性、低成本、良好工艺兼容性以及高稳定性的析氢催化剂是实现一体化光电化学水解制氢器件的关键, 然而传统的贵金属催化剂由于储量稀缺、成本高昂而严重限制了光电化学水解制氢器件的产业化进程. 本文在室温下通过湿法化学合成法制备了高催化活性、成本低廉以及工艺兼容性好的非金属非晶三硫化钼析氢催化剂, 并研究了不同催化剂滴涂量对其催化活性以及串联制氢器件制氢性能的影响. 结果表明, 存在最优化非晶三硫化钼催化剂滴涂量以获得最佳催化活性(10 mA/cm2电流密度对应电势达260 mV vs. RHE(可逆氢电极), 塔菲尔斜率达68 mV/dec), 其粗糙表面以及多孔结构可获得更大的电化学接触面积以促进析氢反应. 进一步将其作为光阴极应用于串联制氢器件, 可有效降低过电势损失和提高光生电流密度输出, 与光阳极结合有望提高制氢效率.

关 键 词:催化剂  三硫化钼  滴涂量  催化活性
收稿时间:2015-12-29

Modulating catalytic capacities of room-temperature synthetized amorphous molybdenum trisulfide hydrogen evolving catalysts and their applications to in series solar water splitting devices in series
Jin Zhong-Hua,Liu Bo-Fei,Liang Jun-Hui,Wang Ning,Zhang Qi-Xing,Liu Cai-Chi,Zhao Ying,Zhang Xiao-Dan.Modulating catalytic capacities of room-temperature synthetized amorphous molybdenum trisulfide hydrogen evolving catalysts and their applications to in series solar water splitting devices in series[J].Acta Physica Sinica,2016,65(11):118801-118801.
Authors:Jin Zhong-Hua  Liu Bo-Fei  Liang Jun-Hui  Wang Ning  Zhang Qi-Xing  Liu Cai-Chi  Zhao Ying  Zhang Xiao-Dan
Affiliation:1. School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China; 2. Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, China
Abstract:Highly-catalytic, cost-effective, well process-compatible, and highly-stable hydrogen-evolving catalysts are increasingly becoming key catalysts in realizing monolithic electrochemical solar water-splitting devices. However, the typical noble metallic catalysts seriously restrict the industrialization of electrochemical solar water-splitting devices on account of their poor storages and high costs. Low-cost, high-catalytic and non-metallic catalysts pave the promising way for the industrialization process. Molybdenum sulfide has emerged as a type of potential catalyst with high-activity and stability for the hydrogen-evolving reaction (HER) in the acidic condition, nowadays gradually becoming a research hotspot in solar-water-splitting. The process preparation of high-efficient molybdenum sulfide catalyst is consequently extremely important for enhancing the solar-to-hydrogen efficiency. In this paper, we synthesize highly-catalytic, low-cost, and highly-compatible non-metallic amorphous molybdenum trisulfide catalyst based on a simple wet chemical approach at room temperature for hydrogen-evolving reaction, followed by extensive studies of the effects of the mass loading of catalyst on the catalytic capacity and the solar-to-hydrogen performance of solar-water-splitting devices in series. When the mass loading is 0.5 mg·cm-2, the MoS3 catalyst exhibits the promising HER activity. the surface of catalyst appears to be rough, porous, nano-sized architecture and the thickness is around 2.0 μm, which simultaneously enlarges the electrochemically active area and reduces charge transfer impedance, accelerating the electron transport to electrochemically active site and improving the interfacial charge transfer. Besides, the HER catalytic activity is illustrated in a wired solar-water-splitting device. The current density can achieve the maximum values of 7.51 and 3.28 mA/cm2 corresponding to 0 and 0.8 V vs. RHE, and the onset potential is 1.83 V, comparable to the open circuit voltage (1.90 V) of two amorphous silcon cells in series. Therefore, we conclude that for amorphous molybdenum trisulfide catalyst there exists an optimized mass loading, with which an optimized catalytic capacity (260 mV vs. RHE at 10 mA/cm2 and tafel slope of 68 mV/dec) can be achieved. Further, by using the catalyst as a cathode for the solar-water-splitting devices in series, the catalyst can efficiently reduce the overpotential and improve the current output for the device, thereby potentially achieving a higher solar-to-hydrogen efficiency.
Keywords:catalysts  amorphous molybdenum trisulfide  mass loading  catalytic capacities
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号