首页 | 官方网站   微博 | 高级检索  
     

Ni与钇稳定的氧化锆(111)表面相互作用以及界面活性的第一性原理研究
引用本文:董珊,张岩星,张喜林,许晓培,毛建军,李东霖,陈志明,马款,范政权,魏丹丹,杨宗献.Ni与钇稳定的氧化锆(111)表面相互作用以及界面活性的第一性原理研究[J].物理学报,2016,65(6):68201-068201.
作者姓名:董珊  张岩星  张喜林  许晓培  毛建军  李东霖  陈志明  马款  范政权  魏丹丹  杨宗献
作者单位:河南师范大学物理与电子工程学院, 新乡 453007
基金项目:国家自然科学基金(批准号: 11174070, 11474086)和河南师范大学“大学生创新创业训练计划” (国家级)(批准号: 201310476036)资助的课题.
摘    要:采用基于密度泛函理论的第一性原理方法, 系统研究了Ni原子在钇稳定的氧化锆(YSZ)(111)和富氧的YSZ(YSZ+O)(111)表面不同位置的吸附, 以及CO和O2分子在Ni1(单个镍原子)/YSZ和Ni1/YSZ+O表面吸附的几何与电子结构特征. 结果表明: 1) 单个Ni原子倾向于吸附在O原子周围, 几乎不吸附在Y原子周围, 且Ni原子在氧空位上吸附最稳定; 2)和YSZ相比, 单个Ni原子在YSZ+O表面易发生氧化现象, Ni原子失去1.06 e电子, 被氧化成了Ni+, 吸附能力更强; 3)被氧化的Ni催化活性大幅下降, 大大减弱了表面对O2和CO等燃料气体的吸附作用.

关 键 词:Ni/钇稳定的氧化锆  CO吸附  第一性原理
收稿时间:2015-11-25

The first-principles study on the interaction of Ni with the yttria-stabilized zirconia and the activity of the interface
Dong Shan,Zhang Yan-Xing,Zhang Xi-Lin,Xu Xiao-Pei,Mao Jian-Jun,Li Dong-Lin,Chen Zhi-Ming,Ma Kuan,Fan Zheng-Quan,Wei Dan-Dan,Yang Zong-Xian.The first-principles study on the interaction of Ni with the yttria-stabilized zirconia and the activity of the interface[J].Acta Physica Sinica,2016,65(6):68201-068201.
Authors:Dong Shan  Zhang Yan-Xing  Zhang Xi-Lin  Xu Xiao-Pei  Mao Jian-Jun  Li Dong-Lin  Chen Zhi-Ming  Ma Kuan  Fan Zheng-Quan  Wei Dan-Dan  Yang Zong-Xian
Affiliation:College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007, China
Abstract:Solid oxide fuel cell (SOFC) is expected to be a crucial technology in future power generation due to its advantages of high efficiency, fuel adaptability, all-solid state, modular assembly, and low pollution. The Ni/YSZ (yttrium-stabilized zirconia) cermet is the most popular anode material in SOFCs. However, a major problem is that it can be easily oxidized, thus resulting in the decline of long-term stability and activity as an anode catalyst. A better performance of the Ni/YSZ cermet can be obtained by improving its microstructure as well as the Ni distribution in it. Interactions between Ni and the yttria-stabilized zirconia (YSZ) (111) or oxygen-enriched YSZ(111) (YSZ+O) surface are studied in terms of the first-principles method based on the density functional theory with particular focus put on the activity of the Ni atom at the interface. The geometric and electronic structures of CO and O2 on the Ni1 (the single Ni atom)/YSZ and Ni1/YSZ+O surfaces are also studied. It is found that the Ni atom tends to be adsorbed to O sites and away from the Y atoms on both the surfaces. The most favorable adsorption site is the oxygen vacancy, which has an adsorption energy of 2.85 eV. Compared with YSZ, the single Ni atom loses 1.06 electrons and is oxidized as Ni+ on YSZ+O, which produces a strong interaction between the Ni atom and YSZ+O. Strong adsorption is mainly attributed to the interaction between Ni 3d and Ou 2p orbitals. And the oxidation of Ni can lead to the decrease of electrocatalytic activity of the Ni catalyst. The d-band DOS (density of states) peaks of the Ni1/YSZ+O are lower than that of the Ni1/YSZ, and the corresponding d-band centers are shifted away from the Fermi level to lower energy with the εd value of -3.69 eV; therefore the CO and O2 adsorption is weakened. While the adsorption energy for CO on the Ni1/YSZ+O (0.42 eV) is much lower than that on the Ni1/YSZ surface (1.78 eV). In addition, the adsorbed CO gains 0.07 electrons, less than those on the Ni1/YSZ surface (0.34 e). The adsorption energy of O2 on Ni1/YSZ+O also decreases (0.34 eV) and gains fewer electrons (0.24 e) as compared with the corresponding values (2.57 eV, 1.15 eV) on Ni1/YSZ. Results would improve our understanding on the mechanism of oxidation of Ni on the Ni/YSZ anode of SOFCs and would be of great importance for designing highly active catalysts used for fuel cells.
Keywords:Ni/yttrium-stabilized zirconia  CO adsorption  first-principles study
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号