首页 | 官方网站   微博 | 高级检索  
     


Electric field induced splitting of the preferred orientation in PMN-PT textured ceramics
Authors:Sreenivasulu Gollapudi  Min Gao  Jiefang Li  Yunfei Chang  Gary L Messing  Richard J Meyer  Dwight Viehland
Affiliation:1. Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia;2. Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania;3. Applied Research Laboratory, Pennsylvania State University, University Park, Pennsylvania
Abstract:We have performed studies of the orientation distribution in <001>C textured, 0.03(Na1/2Bi1/2)TiO3 - 0.970.715Pb(Mg1/3Nb2/3)TiO3 - 0.285PbTiO3] (0.03NBT-0.97PMN-28.5PT]) ceramics by a pole figure method, comparing the results to those for PMN-PT single crystal and polycrystal samples. The pole figures about the (001) zone are found to have monoclinic, Ma, phase for textured ceramics in the annealed condition and were similar to those for electrically poled single crystals. However, electrical poling of the textured ceramics resulted in a doublet splitting of the orientation distribution about the direction that defined the original grain texturing. Studies of pole figures about other high-symmetry zones also revealed the development of some degree of preferred orientation along the in-plane directions after poling. Our findings demonstrate that E-field induced phase transformation and domain textures superimpose with that of preferred grain orientations, giving rise to a unique texture symmetry for PMN-PT. The texture symmetry changes are driven by minimization of the elastic strain energy, and have an important effect upon the piezoelectric properties.
Keywords:ceramic material  crystallographic texture  external electric field  single crystal  texture evolution  XRD
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号