首页 | 官方网站   微博 | 高级检索  
     

基于串并对称式液冷流道的锂电池散热分析
引用本文:刘霏霏,?,虞帮强,秦武,程贤福,曾建邦. 基于串并对称式液冷流道的锂电池散热分析[J]. 湖南大学学报(自然科学版), 2024, 0(2): 198-207
作者姓名:刘霏霏  ?  虞帮强  秦武  程贤福  曾建邦
作者单位:(1.华东交通大学 机电与车辆工程学院,江西 南昌 330013;2.华东交通大学 载运工具与装备教育部重点实验室,江西 南昌 330013)
摘    要:针对锂离子电池均温性差和液冷系统能耗高等问题,以方形锂离子电池为研究对象,在电池单体模型验证的基础上,设计了串并对称式液冷流道的锂离子电池散热结构,对比了5种流道方案,在优选方案四的基础上,分析了液冷板中的液冷流速、铝板厚度组合和液冷系统的启动时间对电池散热效果和液冷系统能耗的影响.结果表明:与方案一的流道形状S0对比,方案四的流道形状S3能够将模组中电池单体的最大温差降低15%;此外,电池的最高温度随着液冷流速的增加呈现先减小后平缓的趋势;在保证液冷系统总质量不变的前提下,与初始的铝板厚度组合h0对比,调整后的铝板厚度组合h4可将电池模组的最大温差降低12%;电池在2.5C放电时,延迟液冷系统启动时间至563 s,既可以保证电池在最佳的工作温度范围内,又能节约液冷系统约39%的能耗成本.

关 键 词:锂离子电池;液冷系统;散热结构;性能分析

Heat Dissipation Analysis of Lithium-ion Battery Based on Series-parallel Symmetrical Liquid Cooling Channel
LIU Feifei,?,YU Bangqiang,QIN Wu,CHENG Xianfu,ZENG Jianbang. Heat Dissipation Analysis of Lithium-ion Battery Based on Series-parallel Symmetrical Liquid Cooling Channel[J]. Journal of Hunan University(Naturnal Science), 2024, 0(2): 198-207
Authors:LIU Feifei  ?  YU Bangqiang  QIN Wu  CHENG Xianfu  ZENG Jianbang
Affiliation:(1.School of Mechatronics &Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China;2.Key Laboratory of Conveyance and Equipment, Ministry of Education, East China Jiaotong University, Nanchang 330013, China)
Abstract:Aiming at the problems of poor temperature uniformity of lithium-ion batteries and high energy consumption of liquid cooling systems, a square lithium-ion battery was taken as the research object. Based on the verification of the battery cell model, a lithium-ion battery heat dissipation structure with a series-parallel symmetrical liquid cooling channel is designed. Five flow channel schemes are compared. Based on the fourth optimal scheme, the effects of the liquid cooling flow rate in the liquid cooling plate, the thickness combination of the aluminum plates, and the start-up time of the liquid cooling system on the battery heat dissipation and the energy consumption of the liquid cooling system are analyzed. The results show that compared with the channel shape S0 of scheme 1, the channel shape S3 of scheme 4 can reduce the maximum temperature difference of the cells in the battery module by 15%. In addition, the maximum temperature of the battery tends to decrease and then be gentle with the increase of the liquid cooling flow rate. Under the premise of ensuring the total mass of the liquid cooling system is unchanged, compared with the initial aluminum plate thickness combination h0, the adjusted aluminum plate thickness combination h4 can reduce the maximum temperature difference of the battery module by 12%. When the battery is discharged at 2.5C, the start-up time of the liquid cooling system is delayed to 563 s, which can ensure that the battery is within the best working temperature range and can save about 39% of the energy consumption cost of the liquid cooling system.
Keywords:lithium-ion batteries;liquid cooling system;heat dissipation structure;performance analysis
点击此处可从《湖南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号