基于机器学习的脑网络分析方法及应用 |
| |
作者姓名: | 张道强 接标 |
| |
作者单位: | 南京航空航天大学计算机科学与技术学院;安徽师范大学数学计算机科学学院 |
| |
基金项目: | 国家自然科学基金(61422204,61473149)资助项目;江苏省杰出青年基金(BK20130034)资助项目;教育部博士点基金(20123218110009)资助项目;南京航空航天大学基本科研业务费(NE2013105)资助项目;安徽省自然科学基金(1508085MF125)资助项目;模式识别国家重点实验室开放课题(201407361)资助项目 |
| |
摘 要: | 脑网络学习旨在从整体上研究大脑各功能区的交互,对于人类深入了解大脑功能和结构以及对一些脑疾病的诊断都具有非常重要的作用。作为脑网络分析的重要工具,机器学习由于能够从数据中学习规律并对未知数据进行预测,已成为近年来脑网络分析领域一个新的研究热点。本文综述了近年来基于机器学习技术在脑网络分析中的典型研究方法和应用,主要从网络的构建、特征学习和分类预测等3个方面加以介绍。最后,总结全文并展望未来研究方向。
|
关 键 词: | 脑网络分析 机器学习 特征学习 核方法 |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《数据采集与处理》浏览原始摘要信息 |
|
点击此处可从《数据采集与处理》下载全文 |
|