首页 | 官方网站   微博 | 高级检索  
     


Ferulic acid‐loaded collagen hydrolysate and polycaprolactone nanofibres for tissue engineering applications
Authors:Chinnaiyan Senthil Kumar  Agnes Mary Soloman  Ramar Thangam  Ramesh Kannan Perumal  Arun Gopinath  Balaraman Madhan
Affiliation:1. CSIR‐Central Leather Research Institute, Chennai TN, 600 020 India
Abstract:There is a great need for the progress of composite biomaterials, which are effective for tissue engineering applications. In this work, the development of composite electrospun nanofibres based on polycaprolactone (PCL) and collagen hydrolysate (CH) loaded with ferulic acid (FA) for the treatment of chronic wounds. Response Surface Methodology (RSM) has been applied to nanofibres factor manufacturing assisted by electrospinning. For wound healing applications, the authors have created the efficacy of CH, and PCL membranes can act as a stable, protective cover for wound, enabling continuous FA release. The findings of the RSM showed a reasonably good fit with a polynomial equation of the second order which was statistically acceptable at P  < 0.05. The optimised parameters include the quantity of hydrolysate collagen, the voltage applied and the distance from tip‐to‐collector. Based on the Box–Behnken design, the RSM was used to create a mathematical model and optimise nanofibres with minimum diameter production conditions. Using FTIR, TGA and SEM, optimised nanofibres were defined. In vitro, cytocompatibility trials showed that there was an important cytocompatibility of the optimised nanofibres, which was proved by cell proliferation and cell morphology. In this research, the mixed nanofibres of PCL and CH with ferulic could be a potential biomaterial for wound healing.Inspec keywords: tissue engineering, polymer fibres, wounds, electrospinning, nanofibres, response surface methodology, cellular biophysics, proteins, molecular biophysics, scanning electron microscopy, biomedical materials, nanomedicine, nanocomposites, nanofabrication, Fourier transform infrared spectraOther keywords: wound healing applications, PCL membranes, stable cover, protective cover, continuous FA release, RSM, optimised parameters, hydrolysate collagen, mathematical model, optimised nanofibres, polycaprolactone nanofibres, tissue engineering applications, composite biomaterials, composite electrospun nanofibres, collagen hydrolysate, ferulic acid, chronic wounds, Response Surface Methodology, nanofibres factor
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号