首页 | 官方网站   微博 | 高级检索  
     


Improved bioavailability and pharmacokinetics of tea polyphenols by encapsulation into gelatin nanoparticles
Authors:Karikalan Kulandaivelu  Abul Kalam Azad Mandal
Affiliation:1. School of Bio Sciences and Technology, VIT University, Vellore 632014 Tamil Nadu, India
Abstract:The authors prepared surface modified (with polyelectrolyte layers), tea polyphenols (TPP) encapsulated, gelatin nanoparticles (TPP‐GNP) and characterised them. The size of the spherical nanoparticles was ∼50 nm. Number of polyelectrolyte layers and incubation time influenced the encapsulation efficiency (EE); highest EE was noted in nanoparticles with six polyelectrolyte layers (TPP‐GNP‐6L) incubated for 4 h. TPP released from TPP‐GNP‐6L in simulated biological fluids indicated protection and controlled release of TPP due to encapsulation. Mathematical modelling indicated anomalous type as a predominant mode of TPP release. TPP‐GNP‐6L exhibited enhanced pharmacokinetics in rabbit model compared with free TPP. The area under the concentration‐time curve and mean residence time were significantly higher in TPP‐GNP‐6L compared with free TPP which provide an evidence of higher bioavailability of TPP due to encapsulation. The authors demonstrated that encapsulation of TPP into GNPs favoured slow and sustained release of TPP with improved pharmacokinetics and bioavailability thereby can prolong the action of TPP.Inspec keywords: gelatin, nanoparticles, encapsulation, biomedical materials, nanomedicine, particle size, polymer electrolytes, polymer films, nanofabricationOther keywords: bioavailability, pharmacokinetics, gelatin nanoparticles, surface modified tea polyphenols, polyelectrolyte layers, spherical nanoparticle size, incubation time, encapsulation efficiency, TPP‐GNP‐6L, simulated biological fluids, mathematical modelling, TPP release, rabbit model, concentration‐time curve, mean residence time, time 4 h
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号