首页 | 官方网站   微博 | 高级检索  
     


Efavirenz oral delivery via lipid nanocapsules: formulation,optimisation, and ex‐vivo gut permeation study
Authors:Jaleh Varshosaz  Somayeh Taymouri  Ali Jahanian&#x;Najafabadi  Arezoo Alizadeh
Affiliation:1. Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan Iran ; 2. Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan Iran
Abstract:Present investigation aimed to prepare, optimise, and characterise lipid nanocapsules (LNCs) for improving the solubility and bioavailability of efavirenz (EFV). EFV‐loaded LNCs were prepared by the phase‐inversion temperature method and the influence of various formulation variables was assessed using Box–Behnken design. The prepared formulations were characterised for particle size, polydispersity index (PdI), zeta potential, encapsulation efficiency (EE), and release efficiency (RE). The biocompatibility of optimised formulation on Caco‐2 cells was determined using 3‐4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyltetrazolium bromide assay. Then, it was subjected to ex‐vivo permeation using rat intestine. EFV‐loaded LNCs were found to be spherical shape in the range of 20–100 nm with EE of 82–97%. The best results obtained from LNCs prepared by 17.5% labrafac and 10% solutol HS15 when the volume ratio of the diluting aqueous phase to the initial emulsion was 3.5. The mean particle size, zeta potential, PdI, EE, drug loading%, and RE during 144 h of optimised formulation were confirmed to 60.71 nm, −35.93 mV, 0.09, 92.60, 7.39 and 55.96%, respectively. Optimised LNCs increased the ex vivo intestinal permeation of EFV when compared with drug suspension. Thus, LNCs could be promising for improved oral delivery of EFV.Inspec keywords: biomedical materials, solubility, drugs, encapsulation, emulsions, nanoparticles, particle size, nanofabrication, suspensions, toxicology, nanomedicine, cellular biophysics, lipid bilayers, electrokinetic effects, drug delivery systems, molecular biophysicsOther keywords: ex‐vivo permeation, diluting aqueous phase, mean particle size, zeta potential, drug loading, optimised formulation, ex vivo intestinal permeation, improved oral delivery, efavirenz oral delivery, optimisation, ex‐vivo gut permeation study, solubility, bioavailability, phase‐inversion temperature method, formulation variables, Box–Behnken design, polydispersity index, encapsulation efficiency, Caco‐2 cells, lipid nanocapsules, 3‐4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyltetrazolium bromide assay, EFV‐loaded LNC, drug suspension, size 20.0 nm to 100.0 nm, time 144.0 hour, size 60.71 nm, voltage ‐35.93 mV
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号