首页 | 官方网站   微博 | 高级检索  
     

基于流固耦合的轴流泵叶轮强度分析
引用本文:张新,郑源,毛秀丽,吴在强,阚阚,牟童. 基于流固耦合的轴流泵叶轮强度分析[J]. 水电能源科学, 2014, 32(7): 137-139,150
作者姓名:张新  郑源  毛秀丽  吴在强  阚阚  牟童
作者单位:河海大学 能源与电气学院, 江苏 南京 211100;河海大学 能源与电气学院, 江苏 南京 211100;河海大学 能源与电气学院, 江苏 南京 211100;河海大学 能源与电气学院, 江苏 南京 211100;河海大学 能源与电气学院, 江苏 南京 211100;河海大学 能源与电气学院, 江苏 南京 211100
摘    要:对某泵站卧式双向全调节轴流泵在正向抽水工况时各个转角下的叶轮强度进行了单向流固耦合计算,首先将CFD计算得到的叶片表面水压力作为结构面载荷加载到叶片上,再利用有限元软件ANSYS计算叶轮的强度,得到了各个工况下叶轮的静应力分布及变形情况。结果表明,在各叶片安放角下,叶轮静应力最大值随着扬程的升高而增大,且均出现在叶片与轮毂的结合处,应力集中易使此处产生疲劳破坏;最大变形量出现在叶片进水边靠近轮缘位置;静应力的最大值远小于叶轮材料的屈服强度,不足以使叶轮产生裂纹。

关 键 词:轴流泵; 叶轮; 流固耦合; 静应力; 强度

Strength Analysis of Axial Flow Pump Impeller Based on Fluid Solid Coupling
ZHANG Xin,ZHENG Yuan,MAO Xiuli,WU Zaiqiang,KAN Kan and MOU Tong. Strength Analysis of Axial Flow Pump Impeller Based on Fluid Solid Coupling[J]. International Journal Hydroelectric Energy, 2014, 32(7): 137-139,150
Authors:ZHANG Xin  ZHENG Yuan  MAO Xiuli  WU Zaiqiang  KAN Kan  MOU Tong
Affiliation:College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China;College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China;College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China;College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China;College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China;College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
Abstract:In this paper, the impeller strength of two-way full-adjust horizontal axial-flow pump in a pump station under forward pumping conditions was calculated by using unidirectional fluid-structure interaction method. The blade surface water pressure calculated by CFD software is taken as structure surface load of the blade. And then the strength of the impeller is calculated by using finite element software ANSYS. Finally, the impeller's static stress and deformation distribution are obtained under each operating condition. The results show that under each blade rotating angle, the maximum static stress increases with lift increasing; the maximum static stress occurs at the junction of the blade and hub; the stress concentration arouses fatigue failure; maximum deformation of the blade occurs in the inlet edge close to the rim; the maximum static stress is far less than yield strength of the material that the impeller does not appear cracks.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号