首页 | 官方网站   微博 | 高级检索  
     


Synthesis,structural characterization,and magnetic property of nanostructured ferrite spinel oxides (AFe2O4, A = Co,Ni and Zn)
Authors:Chuleeporn Luadthong  Vorranutch Itthibenchapong  Nawin Viriya-empikul  Kajornsak Faungnawakij  Prasert Pavasant  Wiwut Tanthapanichakoon
Affiliation:1. Nanomaterials for Energy and Catalysis Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Paholyothin Rd., Klong Laung, Pathumthani 12120, Thailand;2. Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand;3. Department of Chemical Engineering, Graduate School of Science & Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
Abstract:Nanostructured ferrite spinels AFe2O4 (A = Co, Ni, Zn) were successfully synthesized via a co-precipitation method using oxalate salt as a precursor in an anionic surfactant system in combination with a simple calcination process. High crystallinity samples of nanoparticle spinels in a grain size range of 15–100 nm were obtained by varying the calcination temperature (300–700 °C) and time (1–5 h). Their pore sizes were controlled in a range of 3 nm up to a hundred nm by tailoring the calcination conditions. Raising the calcination temperature was found to decrease the Brunauer–Emmett–Teller (BET) surface area, and broaden the pore structure due to enhanced crystal growth and agglomeration of interparticles of spinels. Transmission electron microscopy (TEM) images of ferrite spinels calcined at 300 °C showed mesoporous structures with narrow pore size distribution, and the maximum BET surface area of CoFe2O4, NiFe2O4 and ZnFe2O4 were found at 201 (Co), 315 (Ni), and 273 (Zn) m2 g−1, respectively. The magnetic hysteresis loops of the ferrite spinels at room temperature demonstrated ferromagnetism in CoFe2O4, superparamagnetism–ferromagnetism in NiFe2O4, and paramagnetism in ZnFe2O4. The highest saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) were obtained from high crystallinity spinels calcined at 700 °C. Nanostructured AFe2O4 with high surface area and mesoporosity promises potentials as novel magnetic catalysts.
Keywords:Nanostructures  Magnetic materials  Precipitation  Heat treatment  Electron microscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号