首页 | 官方网站   微博 | 高级检索  
     


Parylene based bilayer flexible gate dielectric layer for top-gated organic field-effect transistors
Affiliation:1. Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d''Armi, 09123 Cagliari, Italy;2. CNR – Institute of Nanoscience, S3 Centre, Via Campi 213A, 41125 Modena, Italy
Abstract:In this paper, we report on a bilayer insulating film based on parylene-c for gate dielectric layers in top-gate/bottom-contact inkjet-printed organic field-effect transistors (OFETs) with indacenodithiophene-co-benzothiadiazole (IDTBT) and poly(N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5’-(2,2’-bitthiophene)) (P(NDI2OD-T2)) as with p- and n-channel semiconductors. The thin parylene-c film (t = 210 nm) show large gate leakage density (2.52 nA/cm2 at 25 V) and low breakdown voltage (2.2 MV/cm). In addition, a degraded field-effect mobility (μ) was observed in printed IDTBT and P(NDI2OD-T2) OFETs with the parylene-c single-layered dielectric. X-ray photoelectron spectroscopy (XPS) analysis reveals that the degradation of μ is due to unwanted chemical interaction between parylene-c and the conjugated polymer surface during the parylene-c deposition process. By inserting 50-nm thick poly(methyl-methacrylate) (PMMA) and polystyrene (PS) layer in-between the parylene-c and conjugated polymer film, highly improved gate leakage density and breakdown voltage are achieved. The printed IDTBT and P(NDI2OD-T2) OFETs with a bilayer dielectric compose of parylene-c and PMMA and PS show significantly improved hole and electron μ of 0.47 cm2/Vs and 0.13 cm2/Vs, respectively, and better operation stability. In addition, we demonstrate inkjet-printed polymer complementary inverter with a high voltage gain of 25.7 by applying a PS/parylene-c bilayer dielectric.
Keywords:Organic field-effect transistors  Bilayer dielectric  Parylene-c  Conjugated polymer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号