摘 要: | 提出了一种基于卷积神经网络(CNN)与门控循环单元(GRU)的垂直管道气液两相流流型识别方法。该方法基于电阻层析成像(ERT)系统的重建图像,对其填充处理后进行离散余弦变换(DCT),求取最大、最小 DCT 系数的差值,选取一定帧数长度数据作为网络输入,对流型进行识别。分析了输入序列长度对CNN-GRU、CNN 及 GRU 网络分类准确的影响,确定了最佳输入向量维度分别为 60、65 及 50,使用实验数据对3种网络进行训练、测试,结果表明,CNN-GRU网络分类准确率最高,平均流型识别准确率可达 99.40%。
|