首页 | 官方网站   微博 | 高级检索  
     


Deep tow studies of the Tamayo transform fault
Authors:Ken C MacDonald  Kim Kastens  F N Spiess  S P Miller
Affiliation:(1) Marine Physical Laboratory of the Scripps Institution of Oceanography, University of California, San Diego, 92093 La Jolla, Calif., USA
Abstract:The Tamayo transform fault occurs at the north end of the East Pacific Rise where it enters the Gulf of California. The two deep-tow surveys reported here show that the transform fault zone changes significantly as a function of distance from the spreading center intersections. At site 1, near the intersection, one side of the fault is young and the fault zone is narrow and well-defined. Strike slip occurs in a zone approximately 1-km wide suggesting a correspondingly narrow zone of decoupling between the Pacific and North American plates. On the young side of the strike-slip zone, normal faults occur along shear zones which are 45°–50° oblique to the transform strike. They occur parallel to the short axis of the strain ellipse for transform fault strain here, i.e., perpendicular to the least compressive stress. The transform walls are formed by normal faulting as has been pointed out in previous detailed surveys. Here, however, the age contrast of 2.5 m.y. across the transform valley is apparent in the morphology of the normal fault scarps. While the scarps are steep and well-defined on the young side, the scarps on the older side have gradual 10°–30° slopes and appear to be primarily talus ramps. Apparently, the scarps have been tectonically eroded by continued strike slip activity after the initial stages of normal faulting. Thus, transform valleys should be quite asymmetric in cross-section where there is a significant age contrast and one side is less than approximately 0.5 m.y. old. Also, along older sections of the transform valley walls, normal faulting may not be at all obvious due to degradation of the scarps by tectonic erosion. This phenomenon makes the likelihood of transform faults providing lsquowindowsrsquo into the oceanic crust most unlikely except in special cases.The picture of transform deformation is more complex at site 2 in the central portion of the fault where both sides of the fault are greater than 1 m.y. old. Here the transform valley is wider (25–30 km as opposed to 2–5 km). There is no clear simple zone of strike slip tectonics. In fact, the only clear evidence for deformation is the intrusion of magmatic or serpentinite diapirs through the sediments of the transform valley floor. The diapirs have deformed the turbidite layers flooring the valley and in one carefully studied case the turbidite sequence has been uplifted, perched atop the diapir. The pattern of deformation on this outcropping diapir shows radial and concentric fractures which can be modeled by a vertical intrusion circular in plan view. Magnetic studies limit the possible composition to basalt or serpentinite. A 60-km-long median ridge is also likely to be the product of intrusion along the transform fault. The survey at site 2 pointed out the importance of vertical tectonics in the transform valley floor and in particular the importance of diapiric intrusions of either basaltic or serpentinite composition.Based on initial boundary conditions and present tectonic elements in the Tamayo fault zone, a possible history of the mouth of the Gulf of California is outlined. The median ridge was emplaced starting approximately 0.8 m.y. ago by regional extension across the transform fault, the result of lsquoleakyrsquo transform faulting. The diapirs occur along a possible lsquorelayrsquo zone of extension midway along the fault which began approximately 0.15 m.y. ago. The extension in this case is parallel to the trend of the transform fault, is still occurring at present, and may evolve into a true spreading center.Contribution of the Scripps Institution of Oceanography, new series.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号