首页 | 官方网站   微博 | 高级检索  
     


Physical and chemical behaviour of tungsten oxide in the presence of nickel additive under hydrogen and carbon monoxide atmospheres
Authors:Fairous Salleh  Maratun Najiha Abu Tahari  Alinda Samsuri  Tengku Shafazila Tengku Saharuddin  Siti Sarahah Sulhadi  Mohd Ambar Yarmo
Affiliation:1. Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia;2. Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, Kuala Lumpur, 57000, Malaysia;3. Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai, Negeri Sembilan, 71800, Malaysia
Abstract:The physical and chemical behaviour of bulk tungsten oxide (WO3) and Ni doped tungsten oxide (15% Ni/WO3) were examined by performing a temperature-programmed reduction (TPR) technique. The chemical composition, morphology, and surface composition of both samples before and after reduced were analysed by X-ray diffraction (XRD), scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS) analysis. The XRD pattern of calcined Ni doped tungsten oxide powder comprised of WO3 and nickel tungstate (NiWO4) phases. The reduction behaviour was investigated by a non-isothermal reduction up to 900 °C achieved under (10 and 20% v/v) hydrogen in nitrogen (H2 in N2) and (20 and 40% v/v) carbon monoxide in nitrogen (CO in N2) atmospheres. The H2-TPR were indicated the reduction of bulk WO3 and 15% NiWO3 proceed in three steps (WO3 → WO2 → WO2 + W) and (WO3 → WO2 → W + Ni4W) respectively under 20% H2. Whereas, the reduction of 15% WO3 under 40% CO involves of two following stages: (i) low temperature (<800 °C) transformation of WO3 → WO2.72 → WO2 and, (ii) high temperature (>800 °C) transformation of WO2 → W → WC. Furthermore, NiWO4 alloy phase was transformed according to the sequence NiWO4 → Ni + WO2.72 → Ni + WO2 → Ni + W → Ni4W + W at temperature >700 °C and >800 °C in H2 and CO atmospheres, respectively. It can be concluded that the reduction behaviour of WO3 is matched with the thermodynamic data. In addition, the reduction under H2 is more favourable and have better reducibility compared to the CO gas. It is due to the small molecule size and molecule mass of H2 that encourages the diffusion of H2 molecule into the internal surface of the catalyst compared to CO. Moreover, Ni additive had improved the WO3 reducibility and enhancing the CO adsorption and promotes the formation of tungsten carbide (WC) by carburisation reaction. Besides, the formation of Ni during the reduction of 15% Ni/WO3 under CO reductant catalysed the Boudouard reaction to occur, which disproportionated the carbon monoxide to carbon dioxide and carbon (CO → CO2 + C).
Keywords:TPR  Tungsten oxide  Nickel  Hydrogen  Carbon monoxide  Carbide
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号