首页 | 官方网站   微博 | 高级检索  
     


Cellulose acetate ultrafiltration membranes customized with copper oxide nanoparticles for efficient separation with antifouling behavior
Authors:Selvaraj Vetrivel  Meenakshi Sundaram Sri Abirami Saraswathi  Dipak Rana  Kumar Divya  Alagumalai Nagendran
Affiliation:1. Polymeric Materials Research Lab, PG & Research Department of Chemistry, Alagappa Government Arts College, Karaikudi, India;2. Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, Canada
Abstract:Cellulose acetate (CA) nanocomposite ultrafiltration membranes are fabricated with copper oxide (CuO) nanoparticles with the aim of improving efficient protein separation and antifouling performance. CuO nanoparticles are synthesized from cupric nitrate using a wet precipitation method and characterized by FTIR and XRD. CA/CuO nanocomposite membranes fabricated using 0.5, 1.0, and 1.5 wt% of CuO nanoparticles individually by simple phase inversion technique. The CA nanocomposite membrane with 0.5 wt% of hydrophilic CuO exhibited enhanced PWF of 118.6 Lm?2 h?1 due to the improvement in porosity and water uptake. This is in good agreement with the enhanced hydrophilicity of the CA/CuO nanocomposite membranes results observed in surface contact angle and morphological investigations. Further, 95.5% of BSA separation and 94.7% of flux recovery ratio (FRR) indicates its superior antifouling potential caused due to the presence of the hydration layer at the CA/CuO membrane surface. Among all the fabricated membranes, the CA-0.5 nanocomposite membrane with 0.5 wt% of CuO exhibited superiorly improved hydrophilicity, water permeation, BSA separation, and antifouling performance indicates its potential use in water and wastewater treatment applications.
Keywords:cellulose acetate  composite membranes  separation techniques
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号