首页 | 官方网站   微博 | 高级检索  
     


First-principles studies of effects of interstitial boron and carbon on the structural,elastic, and electronic properties of Ni solution and Ni_3Al intermetallics
Affiliation:Department of Physics, Tsinghai University, Beijing 100084, China
Abstract:The effects of boron and carbon on the structural, elastic, and electronic properties of both Ni solution and Ni_3Al intermetallics are investigated using first-principles calculations. The results agree well with theoretical and experimental data from previous studies and are analyzed based on the density of states and charge density. It is found that both boron and carbon are inclined to occupy the Ni-rich interstices in Ni_3Al, which gives rise to a cubic interstitial phase. In addition,the interstitial boron and carbon have different effects on the elastic moduli of Ni and Ni_3Al. The calculation results for the G/B and Poisson's ratios further demonstrate that interstitial boron and carbon can both reduce the brittleness of Ni, thereby increasing its ductility. Meanwhile, boron can also enhance the ductility of the Ni_3Al while carbon hardly has an effect on its brittleness or ductility.
Keywords:Ni3Al  first-principles calculation  elastic constant  elastic modulus  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号