首页 | 官方网站   微博 | 高级检索  
     


Polarization-Encoding-Based Measurement-Device-Independent Quantum Key Distribution with a Single Untrusted Source
Abstract:Measurement-device-independent quantum key distribution(MDI-QKD) can be immune to all detector sidechannel attacks and guarantee the information-theoretical security even with uncharacterized single photon detectors.MDI-QKD has been demonstrated in both laboratories and field-tests by using attenuated lasers combined with the decoy-state technique.However,it is a critical assumption that the sources used by legitimate participants are trusted in MDI-QKD.Hence,it is possible that a potential security risk exists.Here we propose a new scheme of polarization-encoding-based MDI-QKD with a single untrusted source,by which the complexity of the synchronization system can be reduced and the success rate of the Bell-state measurement can be improved.Meanwhile,the decoy-state method is employed to avoid the security issues introduced by a non-ideal single photon source.We also derive a security analysis of the proposed system.In addition,it seems to be a promising candidate for the implementation for QKD network in the near future.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号