首页 | 官方网站   微博 | 高级检索  
     


Control of exciton spin relaxation by electron-hole decoupling in type-II nanocrystal heterostructures
Authors:He Jun  Lo Shun S  Kim Jeongho  Scholes Gregory D
Affiliation:Department of Chemistry, Institute for Optical Sciences, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
Abstract:The electron spin flip relaxation dynamics in type II CdSe/CdTe nanorod heterostructures are investigated by an ultrafast polarization transient grating technique. Photoexcited charge separation in the heterostructures suppresses the electron-hole exchange interaction and their recombination, which reduces the electron spin relaxation rate in CdSe nanocrystals by 1 order of magnitude compared to exciton relaxation. The electron orientation is preserved during charge transfer from CdTe to CdSe, and its relaxation time constant is found to be approximately 5 ps at 293 K in the CdSe part of these nanorods. This finding suggests that hole spin relaxation determines the exciton fine structure relaxation rate and therefore control of exciton spin relaxation in semiconductor nanostructures is possible by delocalizing or translating the hole density relative to the electron.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号