首页 | 官方网站   微博 | 高级检索  
     


Subnanometer-scale chemistry and structure of α-iron/molybdenum nitride heterophase interfaces
Authors:Dieter Isheim  David N Seidman
Affiliation:(1) the Department of Materials Science and Engineering, Northwestern University, 60208-3108 Evanston, IL
Abstract:The local chemistry and structure of α-iron/molybdenum nitride heterophase interfaces is studied on a subnanometer scale by atom-probe field-ion microscopy (APFIM), three-dimensional atom-probe microscopy (3DAPM) and both conventional transmission electron microscopy (CTEM) and highresolution electron microscopy (HREM). Molybdenum nitride precipitates are generated by annealing Fe-2 at. pct Mo-X, where X=0.4 at. pct Sb or 0.5 at. pct Sn, at 550 °C or 600 °C, in an ammonia/hydrogen mixture. Internal nitridation at 550 °C produces thin, coherent platelet-shaped molybdenum nitride precipitates. Nitridation at 600 °C generates a much coarser structure with semicoherent thick plate-shaped and spheroidal precipitates in addition to the thin-platelet structure. The APFIM and 3DAPM analyses of the heterophase interfaces show substantial segregation of the solute species Sn and Sb only at the coarse precipitates, with Gibbsian interfacial excesses of up to 7±3 nm−2, whereas the broad faces of the thin platelets have no detectable segregation. The TEM and HREM analyses show that the coarse precipitates are semicoherent, whereas the thin platelets are either coherent or have much fewer misfit dislocations than geometrically necessary. This demonstrates that Sn and Sb segregation is related to the presence of misfit dislocations at the interfaces of the coarse precipitates. This article is based on a presentation made at the symposium entitled “The Mechanisms of the Massive Transformation,” a part of the Fall 2000 TMS Meeting held October 16–19, 2000, in St. Louis, Missouri, under the auspices of the ASM Phase Transformations Committee.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号