首页 | 官方网站   微博 | 高级检索  
     


Experiences with Sweep3D implementations in Co-array Fortran
Authors:Cristian Coarfa  Yuri Dotsenko  John Mellor-Crummey
Affiliation:(1) Department of Computer Science, Rice University, Houston, TX 77005, USA
Abstract:As part of the recent focus on increasing the productivity of parallel application developers, Co-array Fortran (CAF) has emerged as an appealing alternative to the Message Passing Interface (MPI). CAF belongs to the family of global address space parallel programming languages; such languages provide the abstraction of globally addressable memory accessed using one-sided communication. At Rice University we are developing caf c, an open source, multiplatform CAF compiler. Our earlier studies show that caf c-compiled CAF programs achieve similar performance to that of corresponding MPI codes for the NAS Parallel Benchmarks. In this paper, we present a study of several CAF implementations of Sweep3D on four modern architectures. We analyze the impact of using one-sided communication in Sweep3D, identify potential sources of inefficiencies and suggest ways to address them. Our results show that we achieve comparable performance to that of the MPI version on three cluster-based architectures and outperform it by up to 10 % on the SGI Altix 3000. This work was supported in part by the Department of Energy under Grant DE-FC03-01ER25504/A000, the Los Alamos Computer Science Institute (LACSI) through LANL contract number 03891-99-23 as part of the prime contract (W-7405-ENG-36) between the DOE and the Regents of the University of California, Texas Advanced Technology Program under Grant 003604-0059-2001, and Compaq Computer Corporation under a cooperative research agreement. This research was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. Pacific Northwest is operated for the Department of Energy by Battelle. The computations were performed in part on an Itanium cluster purchased with support from the NSF under Grant EIA-0216467, Intel, and Hewlett Packard and on the National Science Foundation Terascale Computing System at the Pittsburgh Supercomputing Center. Cristian Coarfa and Yuri Dotsenko contributed equally to this work.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号