首页 | 官方网站   微博 | 高级检索  
     


First-principles calculations on the elastic and thermodynamic properties of NbN
Authors:Ren Da-Hua and Cheng Xin-Lu
Affiliation:Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract:The elastic and thermodynamic properties of NbN at high pressures and high temperatures are investigated by the plane-wave pseudopotential density functional theory(DFT).The generalized gradient approximation(GGA) with the Perdew-Burke-Ernzerhof(PBE) method is used to describe the exchange-correlation energy in the present work.The calculated equilibrium lattice constant a0,bulk modulus B0,and the pressure derivative of bulk modulus B0’ of NbN with rocksalt structure are in good agreement with numerous experimental and theoretical data.The elastic properties over a range of pressures from 0 to 80.4 GPa are obtained.Isotropic wave velocities and anisotropic elasticity of NbN are studied in detail.It is indicated that NbN is highly anisotropic in both longitudinal and shear-wave velocities. According to the quasi-harmonic Debye model,in which the phononic effect is considered,the relations of(V-V0)/V0 to the temperature and the pressure,and the relations of the heat capacity CV and the thermal expansion coefficientαto temperature are discussed in a pressure range from 0 to 80.4 GPa and a temperature range from 0 to 2500 K.At low temperature,CV is proportional to T3 and tends to the Dulong-Petit limit at higher temperature.We predict that the thermal expansion coefficientαof NbN is about 4.20×10-6/K at 300 K and 0 GPa.
Keywords:NbN density functional theory  quasi-harmonic Debye model  elastic constants  thermo-dynamic properties
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号