首页 | 官方网站   微博 | 高级检索  
     


Electrochemical properties of Mg-based alloys containing carbon nanotubes
Authors:F.X. Wang   X.P. Gao   Z.W. Lu   S.H. Ye   J.Q. Qu   F. Wu   H.T. Yuan  D.Y. Song
Affiliation:

a Institute of New Energy Material Chemistry, N&T Joint Academy, Nankai University, Tianjin 300071, China

b National Development Center of Hi-Tech Green Materials, Beijing 100081, China

Abstract:In this work, effects of partial substitution of Mg, Ni with AB2 in Mg-based alloy and subsequent surface modification by further ball-milling with carbon nanotubes (CNTs) on electrochemical properties were investigated. Mg1.9(AB2)0.1Ni0.8 (AB2=LaNi2, LaNiCo and LaNiMn) alloys were prepared by solid-state diffusion method, the nanocrystalline Mg-based alloys were prepared by ball-milling the mixture of obtained Mg1.9(AB2)0.1Ni0.8 alloys and nickel powder. It was found that the electrochemical capacities of nanocrystalline Mg1.9(AB2)0.1Ni1.8 alloys were measured to be 460–490 mAh/g. The nanocrystalline Mg-based alloys containing carbon nanotubes (10 wt.%) obtained by ball-milling after 60 min were demonstrated to show improved electrochemical properties with respect to the original nanocrystalline Mg-based alloys. The electrochemical reaction activity was detected by electrochemical impedance spectra (EIS). Raman and X-ray photoelectron spectroscopy (XPS) proved the interaction between Mg1.9(AB2)0.1Ni1.8 alloys and carbon nanotubes after ball-milling, which resulted in an increase in the surface Ni/Mg ratio.
Keywords:Author Keywords: Hydrogen absorbing materials   Metal hydrides   Hydrogen storage materials   Electrode materials   Carbon nanotubes   Electrochemical reactions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号