首页 | 官方网站   微博 | 高级检索  
     


A superhydrophilic titanium implant functionalized by ozone gas modulates bone marrow cell and macrophage responses
Authors:Sunarso  Email authorEmail author  Kanji?Tsuru  Kunio?Ishikawa
Affiliation:1.Department of Biomaterials, Faculty of Dental Science,Kyushu University,Fukuoka,Japan;2.Biomedical Research Institute,National Institute of Advanced Industrial Science and Technology (AIST),Osaka,Japan
Abstract:Bone-forming cells and M? play key roles in bone tissue repair. In this study, we prepared a superhydrophilic titanium implant functionalized by ozone gas to modulate osteoconductivity and inhibit inflammatory response towards titanium implants. After 24 h of ozone gas treatment, the water contact angle of the titanium surface became zero. XPS analysis revealed that hydroxyl groups were greatly increased, but carbon contaminants were largely decreased 24 h after ozone gas functionalization. Also, ozone gas functionalization did not alter titanium surface topography. Superhydrophilic titanium (O3–Ti) largely increased the aspect ratio, size and perimeter of cells when compared with untreated titanium (unTi). In addition, O3–Ti facilitated rat bone marrow derived MSCs differentiation and mineralization evidenced by greater ALP activity and bone-like nodule formation. Interestingly, O3–Ti did not affect RAW264.7 M? proliferation. However, naive RAW264.7 M? cultured on unTi produced a two-fold larger amount of TNFα than that on O3–Ti. Furthermore, O3–Ti greatly mitigated proinflammatory cytokine production, including TNFα and IL-6 from LSP-stimulated RAW264.7 M?. These results demonstrated that a superhydrophilic titanium prepared by simple ozone gas functionalization successfully increased MSCs proliferation and differentiation, and mitigated proinflammatory cytokine production from both naive and LPS-stimulated M?. This superhydrophilic surface would be useful as an endosseous implantable biomaterials and as a biomaterial for implantation into other tissues.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号