首页 | 官方网站   微博 | 高级检索  
     


Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes
Authors:M Amdadul Haque  Peter Aldred  Jie Chen  Colin J Barrow  Benu Adhikari
Affiliation:1. School of Health Sciences, University of Ballarat, Mount Helen, VIC 3353, Australia;2. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China;3. School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3217, Australia
Abstract:The extent and nature of denaturation of whey protein isolate (WPI) in convective air drying environments was measured and analysed using single droplet drying. A custom-built, single droplet drying instrument was used for this purpose. Single droplets having 5 ± 0.1 μl volume (initial droplet diameter 1.5 ± 0.1 mm) containing 10% (w/v) WPI were dried at air temperatures of 45, 65 and 80 °C for 600 s at constant air velocity of 0.5 m/s. The extent and nature of denaturation of WPI in isothermal heat treatment processes was measured at 65 and 80 °C for 600 s and compared with those obtained from convective air drying. The extent of denaturation of WPI in a high hydrostatic pressure environment (600 MPa for 600 s) was also determined. The results showed that at the end of 600 s of convective drying at 65 °C the denaturation of WPI was 68.3%, while it was only 10.8% during isothermal heat treatment at the same medium temperature. When the medium temperature was maintained at 80 °C, the denaturation loss of WPI was 90.0% and 68.7% during isothermal heat treatment and convective drying, respectively. The bovine serum albumin (BSA) fraction of WPI was found to be more stable in the convective drying conditions than β-lactoglobulin and α-lactalbumin, especially at longer drying times. The extent of denaturation of WPI in convective air drying (65 and 80 °C) and isotheral heat treatment (80 °C) for 600 s was found to be higher than its denaturation in a high hydrostatic pressure environment at ambient temperature (600 MPa for 600 s).
Keywords:Whey protein isolate  Drying kinetics  Denaturation kinetics  Convective drying  Isothermal heat treatment  High hydrostatic pressure  Single droplet
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号