首页 | 官方网站   微博 | 高级检索  
     


Optimization of catalyst pellet structures and operation conditions for CO methanation
Authors:Yiquan Zhao  Yao Shi  Guanghua Ye  Jing Zhang  Xuezhi Duan  Gang Qian  Xinggui Zhou
Affiliation:State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
Abstract:A fundamental understanding of the effects of catalyst pellet structures and operation conditions on catalytic performance is crucial for the reactions limited by diffusion mass transfer. In this work, a numerical investigation has been carried out to understand the effect of catalyst pellet shapes (sphere, cylinder, trilobe and tetralobe) on the reaction-diffusion behaviors of CO methanation. The results reveal that the poly-lobe pellets with larger external specific surface area have shorter diffusion path, and thus result in higher effectiveness factors and CO conversion rates in comparison with the spherical and cylindrical pellets. The effects of operating conditions and pore structures on the trilobular catalyst pellet with high performance are further probed. Though lower temperature can contribute to larger effectiveness factors of pellets, it also brings about lower reaction rates, and pressure has little impact on the effectiveness factors of the pellets. The increase in porosity can reduce the pellet internal diffusion limitations effectively and there exists an optimal porosity for the methanation reaction. Finally, the height of the trilobular pellet is optimized under the given geometric volume, and the results demonstrate that the higher the trilobular catalyst, the better the reaction performance within the allowable mechanical strength range.
Keywords:CO methanation  Numerical simulation  Catalyst pellet  Shape effects  Reaction-diffusion behavior  
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号