首页 | 官方网站   微博 | 高级检索  
     

基于深度学习和细观力学的颗粒材料本构关系研究
引用本文:瞿同明,冯云田,王孟琦,赵婷婷,狄少丞.基于深度学习和细观力学的颗粒材料本构关系研究[J].力学学报,2021,53(9):2404-2415.
作者姓名:瞿同明  冯云田  王孟琦  赵婷婷  狄少丞
作者单位:*.斯旺西大学辛克维奇工程计算中心, 英国斯旺西 SA1 8EP
基金项目:国家自然科学基金资助项目(12072217, 41606213, 51639004)
摘    要:颗粒材料的本构关系对岩土工程等众多领域至关重要. 不同于传统的唯象本构理论, 本文基于机器学习模型探索了一种细观力学理论指导下的数据驱动型颗粒材料本构关系预测方法. 根据Vogit均质化假设, 建立了小应变条件下颗粒材料应力?应变解析关系, 此关系唯一地确定了一组与颗粒材料本构行为相关的细观组构变量. 这些变量与反应颗粒材料宏观性质的主应力和主应变信息通过一系列离散元三轴压缩数值试验获得. 考虑到细观组构变量为内变量, 不能直接作为本构模型的输入. 本文基于有向图方法将颗粒材料微观结构信息隐式地包含在应力?应变的预测当中, 并采用门控循环单元(GRU)循环神经网络作为基础深度学习模型描述有向图中结点之间的映射关系. 通过将有向图从目标节点沿源节点展开, 整个应力?应变预测模型可由两个神经网络分别训练并组装而成. 将训练后的深度学习模型在全新的数据集上进行测试, 结果表明该训练策略能有效捕捉到颗粒材料在常规三轴任意加卸载, 等中主应力系数b的真三轴加载, 和等平均有效应力p的真三轴加卸载等复杂多轴加载工况下的应力?应变响应关系, 模型具有良好的内插和外推预测能力. 考虑到深度学习模型捕捉颗粒材料力学响应的能力及其开放式学习的特点, 充分结合数据驱动方法和理论本构模型可能是颗粒材料本构研究的一个重要方向. 

关 键 词:颗粒材料    本构关系    深度学习    细观力学    离散元    数据驱动
收稿时间:2021-05-24

CONSTITUTIVE RELATIONS OF GRANULAR MATERIALS BY INTEGRATING MICROMECHANICAL KNOWLEDGE WITH DEEP LEARNING
Affiliation:*.Zienkiewicz Centre for Computational Engineering, Swansea University, Swansea SA1 8EP, UK?.College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China**.College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:Constitutive relations of granular materials are of great significance to many fields, such as geotechnical engineering. Different from traditional phenomenological constitutive theory, this study explores a micromechanics-informed data-driven constitutive modelling approach for granular materials via machine learning models. On the basis of Vogit’s homogenization assumption, an analytical small-strain stress-strain relation is established. This relation uniquely determines a group of micromechanical fabric variables associated with the constitutive behavior of granular materials. These recognized variables, together with principal strain and stress sequence pairs reflecting macroscopic properties of granular materials, are obtained via a series of discrete element models of triaxial compression tests. Considering the fact that these microscopic fabric tensors are internal variables, which cannot be directly used as inputs of a material constitutive model, a directed graph is introduced to incorporate microstructural information implicitly in the prediction of stress-strain responses. The gated recurrent unit (GRU) based recurrent neural networks are used as basic deep learning models to describe the mapping relation between nodes in the designed directed graph. In this study, the entire stress-strain prediction model can be assembled with two neural networks that are trained separately, after unfolding the directed graph from the target node to the source node. By testing the trained deep learning model based on brand new datasets, the results demonstrate that the proposed training approach can satisfactorily capture the multi-directional stress-strain responses with reversal loadings, such as conventional triaxial compression with unloading-reloading cycles, true-triaxial compression with constant intermediate principal stress (constant-b), and constant mean effective effective stress (constant-p) conditions with unloading-reloading cycles. The prediction results also show that the trained model possesses satisfactory interpolation and extrapolation capability. Considering the excellent ability of deep learning in terms of capturing the mechanical responses of granular materials and the unique features of open learning when new data is available, integrating a data-driven paradigm with theoretical constitutive models may be one of the important directions for constitutive research of granular materials. 
Keywords:
点击此处可从《力学学报》浏览原始摘要信息
点击此处可从《力学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号