首页 | 官方网站   微博 | 高级检索  
     


Thermal conductivity of Ni3V–Ni3Al pseudo-binary alloys
Affiliation:1. Department of Physics, Mahendra Morang Adarsha Multiple Campus, Biratnagar, Nepal;2. The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy;1. Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;2. Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
Abstract:The effect of changes in the composition and microstructure of the Ni3V–Ni3Al pseudo-binary alloys on their thermal conductivity has been investigated. For Ni3V and Ni3Al-based single-phase alloys, the thermal conductivity shows a maximum value at the stoichiometric compositions, and it decreases as the V (or Al) content of the Ni3Al (or Ni3V) alloy increases, following the Nordheim rule. For Ni3V–Ni3Al two-phase alloys, the thermal conductivity of the constituent Ni3Al phase exhibits a smaller value than that of the Ni3V phase. Eventually, the thermal conductivity of the two-phase alloys decreases as the Al content increases because of the increase in the volume fraction of the Ni3Al phase with low conductivity. As the temperature increases from 293 K to 1073 K, the conductivity increases for all of the alloys but not for stoichiometric Ni3V. However, the dependence of the thermal conductivity on the alloy composition between 293 K and 1073 K is similar. Hence, it is confirmed that the thermal conductivity of the Ni3V–Ni3Al pseudo-binary alloys is controlled by the composition and volume fraction of the constituent phase.
Keywords:A  Intermetallics  B  Thermal properties  D  Microstructure  E  Physical properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号