首页 | 官方网站   微博 | 高级检索  
     


Regulation of WTG dynamic response to parameter variations of analytic wind stochasticity
Authors:Endusa Billy Muhando  Tomonobu Senjyu  Atsushi Yona  Hiroshi Kinjo  Toshihisa Funabashi
Abstract:Although variable‐speed operation can reduce the impact of transient wind gusts and subsequent component fatigue, this is still an unknown factor that must now be quantified. Reduction in drive‐train stresses caused by fatigue loads in high wind turbulence is fundamental to realizing both output power leveling and long service life for a wind turbine generator (WTG). This paper presents an evolutionary controller comprising a linear quadratic Gaussian (LQG) and neurocontroller acting in tandem to effect optimal performance under high turbulence intensities, for a variable‐speed, fixed‐pitch WTG. The control objectives are maximum energy conversion and reduction in mechanical stresses on the system components. The proposed paradigm utilizes generator torque in controlling the rotor speed in relation to the highly turbulent wind speed, thereby ensuring the extracted aerodynamic power is maintained at a constant value, while shaft moments are regulated. The performance of the proposed controller is compared with that of the LQG and it is found that the former is more efficient in maintaining rated power, minimizing shaft torque variations, and shows robustness to parameter variations. Copyright © 2007 John Wiley & Sons, Ltd.
Keywords:fatigue load reduction  LQG  neurocontroller  parameter variations  turbulence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号