首页 | 官方网站   微博 | 高级检索  
     

杉木幼苗光合及叶绿素荧光特征对氮沉降的短期响应
引用本文:赵佼娇,哀建国. 杉木幼苗光合及叶绿素荧光特征对氮沉降的短期响应[J]. 中国农学通报, 2022, 38(29): 67-73. DOI: 10.11924/j.issn.1000-6850.casb2021-1035
作者姓名:赵佼娇  哀建国
作者单位:浙江农林大学林业与生物技术学院,杭州 311300
基金项目:十三五”国家重点研发计划项目“人工林生产力形成的关键生理生态与环境控制机制”(2016YFD0600201)
摘    要:为了探究模拟氮沉降条件下杉木幼苗光合及叶绿素荧光特征变化规律,从光合生理的角度探讨不同季节杉木幼苗对氮沉降的短期响应。选取杉木幼苗为实验对象,模拟氮沉降实验,设置4个处理水平对照(N0)、低氮(N30:30 kg/(hm2·a)、中氮(N60:60 kg/(hm2·a)、高氮(N90:90 kg/(hm2·a)。结果表明:添加氮以后,杉木幼苗的净光合速率(Pn),初始荧光产量(F0)、最大荧光产量(Fm)、最大PSII光能转换效率(Fv/Fm)、PSII潜在活性(Fv/F0)显著降低,水分利用率(Wue)显著增高(P<0.05)。随着氮沉降水平的增加,气孔导度(Gs)与蒸腾速率(Tr)呈现先升高后下降趋势,水分利用率呈现先下降后升高趋势。在中氮和高氮处理下,Fv/Fm、Fv/F0值显著降低(P<...

关 键 词:氮沉降  杉木幼苗  气体交换参数  叶绿素荧光
收稿时间:2021-11-01

Short-term Response of Photosynthesis and Chlorophyll Fluorescence Characteristics of Fir Seedlings to Nitrogen Deposition
ZHAO Jiaojiao,AI Jianguo. Short-term Response of Photosynthesis and Chlorophyll Fluorescence Characteristics of Fir Seedlings to Nitrogen Deposition[J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 67-73. DOI: 10.11924/j.issn.1000-6850.casb2021-1035
Authors:ZHAO Jiaojiao  AI Jianguo
Affiliation:College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300
Abstract:To explore the change law of the photosynthesis and chlorophyll fluorescence characteristics of fir seedlings under simulated nitrogen deposition condition, the short-term response of fir seedlings to nitrogen deposition in different seasons was discussed from the perspective of photosynthesis physiology. The fir seedlings were selected as experimental subjects, and the nitrogen deposition experiment was simulated with four treatment levels of the control (N0), low nitrogen (N30:30 kg/(hm2.a)), medium nitrogen (N60:60 kg/(hm2.a)), and high nitrogen(N90:90 kg/(hm2.a)). The results showed that after adding nitrogen, the net photosynthesis rate (Pn), initial fluorescence yield (F0), maximum fluorescence yield (Fm), maximum PSII light energy conversion efficiency (Fv/Fm) and PSII potential activity (Fv/F0) were significantly reduced, while water utilization rate (Wue) increased significantly (P<0.05). With the increase of nitrogen deposition level, stomatal conductance (Gs) and transpiration rate (Tr) showed a tendency of increase first and then decrease, and the water use efficiency showed a trend of first decrease then increase. With the medium and high nitrogen treatment, Fv/Fm and Fv/F0 values were significantly reduced (P<0.05). In winter, the net photosynthesis rate was significantly and positively correlated with stomatal conductance, transpiration rate and intercellular CO2 concentration (P<0.01); and in spring, the net photosynthesis rate was significantly and positively correlated with stomatal conductance and transpiration rate (P<0.01), and negatively correlated with intercellular CO2 concentration. After the accumulation of nitrogen deposition reached a certain threshold, the water loss was increased, which reduced the water utilization efficiency of the plant. In winter, the net photosynthesis rate was mainly affected by the stomatal limit, heat dissipation increased, and the PSII reaction center showed photo-suppression phenomenon; when it turned to spring, the excessive accumulation of nitrogen deposition destroyed the photosynthesis structure of seedlings, resulting in an increase in the concentration of carbon dioxide between cells and a decrease in the net photosynthesis rate. Then the non-stomatal limits became the main reason for the impact on the net photosynthesis rate. The medium nitrogen treatment could reduce the potential activity of PSII in chlorophyll, and the photosynthetic electron transfer capacity of the photoreaction center decreases, resulting in the decrease of photosynthesis efficiency.
Keywords:nitrogen deposition  fir seedling  gas exchange parameters  chlorophyll fluorescence parameters  
点击此处可从《中国农学通报》浏览原始摘要信息
点击此处可从《中国农学通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号