首页 | 官方网站   微博 | 高级检索  
     


Sm0.5Sr0.5CoO3 cathode material from glycine-nitrate process: Formation, characterization, and application in LaGaO3-based solid oxide fuel cells
Authors:Shuo Yang   Tianmin He  Qiang He
Affiliation:

aCollege of Physics, Jilin University, Changchun, 130023, PR China

Abstract:Cathode material Sm0.5Sr0.5CoO3 (SSC) with perovskite structure for intermediate temperature solid oxide fuel cell was synthesized using glycine-nitrate process (GNP). The phase evolution and the properties of Sm0.5Sr0.5CoO3 were investigated. The single cell performance was also tested using La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) as electrolyte and SSC as cathode. The results show that the formation of perovskite phase from synthesized precursor obtained by GNP begins at a calcining temperature of 600 °C. The single perovskite phase is formed completely after sintering at a temperature of 1000 °C. The phase formation temperature for SSC with complete single perovskite phase is from 1000 to 1100 °C. The SrSm2O4 phase appeared in the sample sintered at 1200 °C. It is also found that the sample sintered at 1200 °C has a higher conductivity. The electrical conductivity of sample is higher than 1000 S/cm at all temperature examined from 250 to 850 °C, and the highest conductivity reaches 2514 S/cm at 250 °C. The thermal expansion coefficient of sample SSC is 22.8 × 10−6 K−1 from 30 to 1000 °C in air. The maximum output power density of LSGM electrolyte single cell attains 222 and 293 mW/cm2 at 800 and 850 °C, respectively.
Keywords:Electrode materials   Chemical synthesis   Crystal structure   Thermal analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号