首页 | 官方网站   微博 | 高级检索  
     


Metallurgical and mechanical characterisation of titanium based materials for endosseous applications obtained by selective laser melting
Authors:none
Abstract:Abstract

The aim of the present work was to estimate the feasibility of selective laser melting (SLM) to produce Ti-hydroxyapatite bioactive composite materials for personalised endosseous implants. Mixtures of Ti6Al7Nb surface conditioned powder with hydroxyapatite up to 5 vol.-% were processed by SLM with the same scanning strategy and laser power in the range of 50–200 W. Specimens with porous structures were characterised from a structural and mechanical point of view. Irrespective to the initial hydroxyapatite content, density increased by increasing the laser power. The microstructure of manufactured parts mainly consisted of α′ martensite. In materials with 5 vol.-% hydroxyapatite, a phosphorous containing phase formed as a consequence of hydroxyapatite decomposition and interaction with the base Ti alloy. By increasing the laser power, the tensile strength increased mainly due to the density improvement of all the investigated materials.
Keywords:Titanium alloy  Hydroxyapatite  Selective laser melting  Microstructure  Tensile properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号