首页 | 官方网站   微博 | 高级检索  
     


Removal of Hg from flue gases in wet FGD by catalytic oxidation with air - An experimental study
Authors:Andrej Stergar&scaron  ek,Peter Frkal
Affiliation:a “Jo?ef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
b Notranjski regijski park, Tabor 42, 1380 Cerknica, Slovenia
Abstract:About 46% of global mercury emissions are due to fossil fuel combustion for electrical and thermal energy production. Since more stringent emission standards are expected, important research efforts are being focused on the development of mercury removal technologies, mainly directed to two alternative approaches: (i) the enhancement of homogeneous oxidation in the flue gases of Hg0 to water soluble Hg2+ by the addition of chlorides or bromides to the boiler or; (ii) the adsorption of Hg2+ and Hg0 on impregnated activated carbon (AC). The latter may require the treatment of the entire gas volume of the thermal power plant and constantly consumes relatively large quantities of AC.A third option gaining more attention lately is based on the oxidation and retention of dissolved Hg0 in the wet flue gas desulphurisation (FGD) system. A series of chemical oxidants, such as halogens, hydrogen peroxide, sulphur and oxygen, are theoretically able to oxidize Hg0 in the wet FGD system. Most chemical oxidants when applied in the FGD, however, are non-selective and are largely consumed by SO2 absorbed from the flue gas. The less expensive oxidant, non-selective as well, is oxygen (as air) which is already being dispersed into FGD absorbing suspension for the conversion of View the MathML source into View the MathML source.The experimental evidence of the present work showed that Hg0 present in the gaseous phase can be dissolved and oxidized to a high degree (70-90%) by air together with View the MathML source in wet FGD solutions. Transition metals such as Fe2+ and Mn2+ act as catalysts, chloride enhances the reaction, while some oxosulphur compounds, e.g. tetrathionate, inhibit the oxidation. A combination of several catalysts at a concentration of sulphite (View the MathML source) below 100 mg L−1 and an adequate redox potential of the solution can assure reasonable mercury removal even in the presence of oxidation inhibiting compounds.The main competitive reactions that govern final Hg0 removal in the FGD are as follows: (1) oxidation of Hg0 together with SO2 with air, enhanced by catalysts; (2) removal of catalysts by precipitation in the form of Fe(OH)3 and eventually as MnO2 (to overcome this problem continuous addition of catalysts to the solution is required); (3) reduction of Fe3+ by tetrathionate to Fe2+ which (4) may reduce Hg2+ to Hg0 and probably (5) the complexation of Hg2+ by anions present which may play an important role in the mechanism by complexing the product(s) of the Hg0 oxidation reaction.
Keywords:Elemental mercury   Removal   Flue gas   Oxidation   FGD
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号