首页 | 官方网站   微博 | 高级检索  
     


Evolution of the perturbation of a circle in the Stokes-Leibenson problem for the Hele-Shaw flow. Part II
Authors:A. S. Demidov
Affiliation:(1) Department Mechanics and Mathematics, Moscow State University, Russia, 119992
Abstract:It is shown that an infinite-dimensional dynamical system of the form

$$begin{gathered}  2left( {t + to} right)left( {beta _1 dot beta _1  + r_1 (beta )dot beta } right) = left( { - beta _1^2  + 2sumlimits_{j geqslant 2} {beta _j^2 } } right) + s_1 (beta ), hfill   2left( {t + to} right)left( {dot beta _k  + R_k (beta )dot beta } right) = left( {k + 2} right)beta _k  + s_k (beta ),k geqslant 2, hfill  end{gathered} $$
studied for sufficiently small r 1, s 1, R k , and S k in the preceding part of this work [Contemporary Mathematics and Its Applications, Vol. 2. Partial Differential Equations (2003), pp. 22–49] describes the evolution of the free boundary in the problem of the Hele-Shaw flow in the case where the pressure is constant on the free boundary (Leibenson condition). __________ Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 24, Dynamical Systems and Optimization, 2005.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号