首页 | 官方网站   微博 | 高级检索  
     


Saline soil enzyme activities of four plant communities in Sangong River basin of Xinjiang,China
Authors:ZhengJun GUAN  Qian LUO  Xi CHEN  XianWei FENG  ZhiXi TANG  Wei WEI  YuanRun ZHENG
Affiliation:[1]State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; [2]Department of Life Sciences, Yuncheng University, Yuncheng 044000, China [3]Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
Abstract:Soil enzyme activity plays an important role in the conversion of soil organic carbon into inorganic carbon,which is significant for the global carbon cycle.In this study,we investigated the soil enzyme activities of two ligninolytic enzymes(peroxidase and polyphenol oxidase)and five non-ligninolytic enzymes(α-1,4-glucosidase(AG);β-1,4-glucosidase(BG);N-acetyl-β-glucosaminidase(NAG);β-D-cellobiosidase(CBH);andβ-xylosidase(BXYL))in four plant communities of the Sangong River basin in Fukang,North Xinjiang,China.The four typical plant communities were dominated by Haloxylon ammodendron,Reaumuria soongonica,Salsola passerina,and Tamarix rarmosissima,respectively,with saline soils of varied alkalinity.The results showed that the soil peroxidase activity decreased seasonally.The activities of the five non-ligninolytic enzymes decreased with increasing soil depths,while those of the two ligninolytic enzymes did not show such a trend.In the four plant communities,BG had the highest activity among the five non-ligninolytic enzymes,and the activities of the two ligninolytic enzymes were higher than those of the four non-ligninolytic ones(AG,NAG,CBH,and BXYL).The community of H.ammodendron displayed the highest activity with respect to the two ligninolytic enzymes in most cases,but no significant differences were found among the four plant communities.The geometric mean of soil enzyme activities of the four plant communities was validated through an independently performed principal component analysis(PCA),which indicated that different plant communities had different soil enzyme activities.The correlation analysis showed that soil polyphenol oxidase activity was significantly positively correlated with the activities of the five non-ligninolytic enzymes.The soil pH value was positively correlated with the activities of all soil enzymes except peroxidase.Soil microbial carbon content also showed a significant positive correlation(P<0.01)with the activities of all soil enzymes except polyphenol oxidase.The results suggested that the H.ammodendron community has the highest ability to utilize soil organic carbon,and glucoside could be the most extensively utilized non-ligninolytic carbon source in the saline soil of arid areas in Xinjiang.
Keywords:soil enzyme activity  saline soil  Haloxylon ammodendron  Reaumuria soongonica  Salsola passerina  Tamafix rarmosissima
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号