首页 | 官方网站   微博 | 高级检索  
     


Water channels in Chara corallina
Authors:Schtz  Kerstin; Tyerman  Stephen D
Abstract:Water relations parameters ofChara corallina inter-nodes weremeasured using the single cell pressure probe. The effect ofmercurials, which are recognized as non-specific water channelinhibitors, was examined. HgCl2 concentrations greater than5 mmol m–3 were found to inhibit hydraulic conductivity{Lp) close to 90%, whereas pCMPS was found to have no effecton Lp. The activation energy of water flow was increased significantlyfrom 21.0 kJ mol–1 to 45.6 kJ mol–1, following theapplication of HgCl2. These results are in accordance with evidencefor Hg2+sensitive water channels in the plasma membrane of charophytes(Henzler and Steudle, 1995; Tazawa et al., 1996). The metaboliceffects must, however, be considered in view of the rapid inhibitionof respiration and the depolarization of the membrane potentialwith HgCl2 concentrations lower than those found to affect Lp.It was possible to measure simultaneously water relations andmembrane PD, in order to examine the contribution of potassiumchannels to Lp. Cells were induced into a K+ permeable state.The K+ channels, assumed to be open, were subsequently blockedby various blockers. No significant difference in Lp was foundfor any of these treatments. Finally, the permeability of C.corallina membranes to ethanol was examined. HgCl2 was foundto cause a decrease in reflection coefficient, coinciding witha decrease in Lp, but there was no change in the ethanol permeabilitycoefficient. This has been interpreted in terms of both thefrictional model and composite model of non-electrolyte membranetransport. Key words: Water channels, Chara, hydraulic, conductivity, membrane transport models, reflection coefficient
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号