首页 | 官方网站   微博 | 高级检索  
     


Secure computation of hidden Markov models and secure floating-point arithmetic in the malicious model
Authors:Mehrdad Aliasgari  Marina Blanton  Fattaneh Bayatbabolghani
Affiliation:1.Department of Computer Engineering and Computer Science,California State University,Long Beach,USA;2.Department of Computer Science and Engineering,University of Notre Dame,Notre Dame,USA
Abstract:Hidden Markov model (HMM) is a popular statistical tool with a large number of applications in pattern recognition. In some of these applications, such as speaker recognition, the computation involves personal data that can identify individuals and must be protected. We thus treat the problem of designing privacy-preserving techniques for HMM and companion Gaussian mixture model computation suitable for use in speaker recognition and other applications. We provide secure solutions for both two-party and multi-party computation models and both semi-honest and malicious settings. In the two-party setting, the server does not have access in the clear to either the user-based HMM or user input (i.e., current observations) and thus the computation is based on threshold homomorphic encryption, while the multi-party setting uses threshold linear secret sharing as the underlying data protection mechanism. All solutions use floating-point arithmetic, which allows us to achieve high accuracy and provable security guarantees, while maintaining reasonable performance. A substantial part of this work is dedicated to building secure protocols for floating-point operations in the two-party setting, which are of independent interest.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号