首页 | 官方网站   微博 | 高级检索  
     


Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite
Authors:Warnecke Falk  Luginbühl Peter  Ivanova Natalia  Ghassemian Majid  Richardson Toby H  Stege Justin T  Cayouette Michelle  McHardy Alice C  Djordjevic Gordana  Aboushadi Nahla  Sorek Rotem  Tringe Susannah G  Podar Mircea  Martin Hector Garcia  Kunin Victor  Dalevi Daniel  Madejska Julita  Kirton Edward  Platt Darren  Szeto Ernest  Salamov Asaf  Barry Kerrie  Mikhailova Natalia  Kyrpides Nikos C  Matson Eric G  Ottesen Elizabeth A  Zhang Xinning  Hernández Myriam  Murillo Catalina  Acosta Luis G  Rigoutsos Isidore  Tamayo Giselle  Green Brian D  Chang Cathy  Rubin Edward M  Mathur Eric J  Robertson Dan E  Hugenholtz Philip
Affiliation:DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA.
Abstract:From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding 'higher' Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-microl environment can be.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号