首页 | 官方网站   微博 | 高级检索  
     


Effects of ultraviolet-B radiation on plants during mild water stress. III. Effects on photosynthetic recovery and growth in soybean
Authors:Alan H. Teramura  Mark C. Perry  John Lydon  Marla S. McIntosh  Edwin G. Summers
Affiliation:Dept of Botany, Univ. of Maryland, College Park, MD 20742, USA;Dept. of Agronomy, Univ. of Maryland, College Park, MD 20742, USA;Dept. of Horticulture, Univ. of Maryland, College Park, MD 20742, USA
Abstract:Soybean { Glycine max (L.) Merr. ev. Essex} was grown from seed in a greenhouse under ultraviolet-B (UV-B, 280–320 nm) radiation supplied by filtered FS-40 sunlamps. On a weighted, total daily dose basis these plants received either 0 (control) or 2875 effective J m−2 day−1 UV-BBE. When weighted with the generalized plant action spectrum (Caldwell 1971), this simulated the solar ultraviolet-B irradiance expected to occur at College Park, Maryland, USA (39°N) in the event the global stratospheric ozone column is reduced by 23%. The effects of ultraviolet radiation on the photosynthetic recovery from water stress were measured with an infrared gas analyzer. These effects were examined in plants which were either well-watered or previously preconditioned to water stress, during two distinct phenological stages of development. During the early stages of soybean growth, enhanced levels of UV-B reduced net photosynthesis by 25%, and water stress also reduced photosynthesis to nearly the same extent (by 20%). The combination of these two stresses resulted in smaller biomass than that produced by plants exposed to either stress independently. Photosynthesis in older, larger plants was much more sensitive to water stress and was reduced by as much as 50–60% in non-preconditioned plants. Although non-irradiated, non-preconditioned (control) plants recovered to only within 60% of their prestressed value, preconditioned plants recovered to within 70–80% during the 3 day recovery period. Both water stress and UV-B radiation affected non-stomatal conductance, while stomatal conductance was primarily affected by water stress.
Keywords:Glycine max    ozone depletion    interactions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号