首页 | 官方网站   微博 | 高级检索  
     


Equilibrium of a pressurized plastic fluid in a wellbore crack
Authors:Dmitry I. Garagash  Erfan Sarvaramini
Affiliation:Dalhousie University, Department of Civil and Resource Engineering, 1360 Barrington Street, Halifax, Nova Scotia, Canada B3J 1Z1
Abstract:This paper investigates equilibrium of a pressurized plastic fluid invading a tensile wellbore crack in a linear elastic, permeable rock. The crack is initially filled by pore fluid at ambient pressure, that is immiscibly displaced by the plastic fluid invading from the wellbore. The plastic fluid comes to rest to form a “plug” within the elastically deformed crack when the limit equilibrium between the shear stresses generated at the fracture walls and the pressure drop between the wellbore wall and the crack tip is reached. The model assumes that the leak-off of the plastic fluid into the rock is negligible, while the displaced pore fluid in the crack tip region is freely exchanged with the surrounding permeable rock to maintain the ambient pressure level. When the crack length ? is small or large compared to the wellbore radius R, the problem reduces to that of a pressurized edge or Griffith’s crack, respectively, subjected to a uniform far-field confining stress. In these two end-member cases, the normalized solution for the net pressure distribution, the plug length, and the stress intensity factor at the crack tip is obtained as a function of two numbers – the normalized net fluid pressure at the crack inlet and at the crack tip (partial plugs only) – that embody the solution’s dependence on the wellbore and the far field loading, the fluid yield strength, and the rock modulus. In the general case of an intermediate crack length (?  R), the normalized solution is a function of two additional parameters, the length-to-radius ratio and a normalized measure of the far field stress anisotropy, respectively, which accurate approximation is devised from an end-member solution using a rescaling argument. The equilibrium plug solutions are used to evaluate the breakdown pressure, the critical wellbore pressure at which the crack propagation condition is first met, and to analyze the stability of the ensuing crack propagation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号