首页 | 官方网站   微博 | 高级检索  
     


Two-dimensional square-Au_2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Affiliation:1.School of Science, Southwest University of Science and Technology, Mianyang 621010, China;2.Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;3.Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, Mianyang 610064, China
Abstract:The search for new two-dimensional (2D) harvesting materials that directly convert (waste) heat into electricity has received increasing attention. In this work, thermoelectric (TE) properties of monolayer square-Au2S are accurately predicted using a parameter-free ab initio Boltzmann transport formalism with fully considering the spin-orbit coupling (SOC), electron-phonon interactions (EPIs), and phonon-phonon scattering. It is found that the square-Au2S monolayer is a promising room-temperature TE material with an n-type (p-type) figure of merit ZT = 2.2 (1.5) and an unexpected high n-type ZT = 3.8 can be obtained at 600 K. The excellent TE performance of monolayer square-Au2S can be attributed to the ultralow lattice thermal conductivity originating from the strong anharmonic phonon scattering and high power factor due to the highly dispersive band edges around the Fermi level. Additionally, our analyses demonstrate that the explicit treatments of EPIs and SOC are highly important in predicting the TE properties of monolayer square-Au2S. The present findings will stimulate further the experimental fabrication of monolayer square-Au2S-based TE materials and offer an in-depth insight into the effect of SOC and EPIs on TE transport properties.
Keywords:first-principles calculations  electron-phonon interactions  lattice thermal conductivity  thermoelectric properties  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号