首页 | 官方网站   微博 | 高级检索  
     


Universal quantum control based on parametric modulation in superconducting circuits
Affiliation:1.National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;2.Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract:As superconducting quantum circuits are scaling up rapidly towards the noisy intermediate-scale quantum (NISQ) era, the demand for electronic control equipment has increased significantly. To fully control a quantum chip of N qubits, the common method based on up-conversion technology costs at least 2×N digital-to-analog converters (DACs) and N IQ mixers. The expenses and complicate mixer calibration have become a hinderance for intermediate-scale quantum control. Here we propose a universal control scheme for superconducting circuits, fully based on parametric modulation. To control N qubits on a chip, our scheme only requires N DACs and no IQ mixer, which significantly reduces the expenses. One key idea in the control scheme is to introduce a global pump signal for single-qubit gates. We theoretically explain how the universal gates are constructed using parametric modulation. The fidelity analysis shows that parametric single-qubit (two-qubit) gates in the proposed scheme can achieve low error rates of 10-4, with a gate time of about 60 ns (100 ns).
Keywords:superconducting qubits  parametric modulation  single-qubit gate  iSWAP gate  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号