首页 | 官方网站   微博 | 高级检索  
     


A unified seakeeping and maneuvering analysis of ships in regular waves
Authors:Renato Skejic  Odd M Faltinsen
Affiliation:(1) Centre for Ships and Ocean Structures (CeSOS), Marine Technology Centre, Norwegian University of Science and Technology, Otto Nielsens veg 10, 7491 Trondheim, Norway
Abstract:The behavior of a ship in regular waves during maneuvering was studied by using a two-time scale model. The maneuvering analysis was based on Söding’s (Schiffstechnik 1982; 29:3–29) nonlinear slender-body theory generalized to account for heel. Forces and moments due to rudder, propeller, and viscous cross-flow follow from the state-of-the-art procedures. The developed unified theory of seakeeping and maneuvering was verified and validated for calm water by comparing it with experimental and calculated zigzag and circle maneuvers. Linear wave-induced motions and loads were determined by generalizing the Salvesen-Tuck-Faltinsen (Trans SNAME 1970; 78:250–287) strip theory. The mean second-order wave loads in incident regular deep water waves in oblique sea conditions were estimated by the potential flow theories of Faltinsen et al. (Proc 13th Symp Naval Hydrody 1980), Salvesen (Proc Intl Symp Dynam Mar Vehicl Struct Wave 1974), and Loukakis and Sclavounos (J Ship Res 1978; 22:1–19). The considered theories cover the whole range of important wavelengths. Comparisons between the different mean second-order wave load theories and available experimental data were carried out for different ship hull forms when the ship was advancing forward on a straight course. The mentioned methods have been incorporated into the maneuvering model. Their applicability from the perspective of the maneuvering ability of the selected types of ships was investigated in given wave environments. The wave conditions are valid for realistic maneuvering cases in open coastal areas. It was demonstrated that the incident waves may have an important influence on the maneuvering behavior of a ship. The added resistance, mean second-order transverse force, and yaw moment also play important roles.
Keywords:Maneuvering  Seakeeping  Mean second-order wave loads  Two-time scale model  Time domain simulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号