首页 | 官方网站   微博 | 高级检索  
     


Differential Contributions of rOat1 (Slc22a6) and rOat3 (Slc22a8) to the <Emphasis Type="Italic">in Vivo</Emphasis> Renal Uptake of Uremic Toxins in Rats
Authors:Tsuneo?Deguchi  Yousuke?Kouno  Tetsuya?Terasaki  Akira?Takadate  Email author" target="_blank">Masaki?OtagiriEmail author
Affiliation:(1) Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan;(2) Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan;(3) New Industry Creation Hatchery Center, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan;(4) Solution-Oriented Research for Science and Technology of Japan Science and Technology Agency, Saitama 332-0012, Japan;(5) Daiichi College of Pharmaceutical Sciences, Minami-ku, Fukuoka 815-0037, Japan
Abstract:No HeadingPurpose. Evidence suggests that uremic toxins such as hippurate (HA), indoleacetate (IA), indoxyl sulfate (IS), and 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) promote the progression of renal failure by damaging tubular cells via rat organic anion transporter 1 (rOat1) and rOat3 on the basolateral membrane of the proximal tubules. The purpose of the current study is to evaluate the in vivo transport mechanism responsible for their renal uptake.Methods. We investigated the uremic toxins transport mechanism using the abdominal aorta injection technique i.e., kidney uptake index (KUI) method], assuming minimal mixing of the bolus with serum protein from circulating serum.Results. Maximum mixing was estimated to be 5.8% of rat serum by measuring estrone sulfate extraction after addition of 0–90% rat serum to the arterial injection solution. Saturable renal uptake of p-aminohippurate (PAH, Km = 408 mgrM) and benzylpenicillin (PCG, Km = 346 mgrM) was observed, respectively. The uptake of PAH and PCG was inhibited in a dose-dependent manner by unlabeled PCG (IC50 = 47.3 mM) and PAH (IC50 = 512 mgrM), respectively, suggesting that different transporters are responsible for their uptake. A number of uremic toxins inhibited the renal uptake of PAH and PCG. Excess PAH, which could inhibit rOat1 and rOat3, completely inhibited the saturable uptake of IA, IS, and CMPF by the kidney, and by 85% for HA uptake. PCG inhibited the total saturable uptake of HA, IA, IS, and CMPF by 10%, 10%, 45%, and 65%, respectively, at the concentration selective for rOat3.Conclusions. rOat1 could be the primary mediator of the renal uptake of HA and IA, accounting for approximately 75% and 90% of their transport, respectively. rOat1 and rOat3 contributed equally to the renal uptake of IS. rOat3 could account for about 65% of the uptake of CMPF under in vivo physiologic conditions. These results suggest that rOat1 and rOat3 play an important role in the renal uptake of uremic toxins and the induction of their nephrotoxicity.
Keywords:chronic renal failure  kidney uptake index  nephrotoxicity  organic anion transporters  uremic toxins
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号