首页 | 官方网站   微博 | 高级检索  
     


Solution structures of chromium(VI) complexes with glutathione and model thiols
Authors:Levina Aviva  Lay Peter A
Affiliation:Centre for Heavy Metals Research and Centre for Structural Biology and Structural Chemistry, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
Abstract:Chromium(VI) complexes of the most abundant biological reductant, glutathione (gamma-Glu-Cys-Gly, I), are among the likely initial reactive intermediates formed during the cellular metabolism of carcinogenic and genotoxic Cr(VI). Detailed structural characterization of such complexes in solutions has been performed by a combination of X-ray absorption fine structure (XAFS) and X-ray absorption near-edge structure (XANES) spectroscopies, electrospray mass spectrometry (ESMS), UV-vis spectroscopy, and kinetic studies. The Cr(VI) complexes of two model thiols, N-acetyl-2-mercaptoethylamine (II) and 4-bromobenzenethiol (III), were used for comparison. The Cr(VI)-thiolato complexes were generated quantitatively in weakly acidic aqueous solutions (for I and II) or in DMF solutions (for II) or isolated as a pure solid (for III). Contrary to some claims in the literature, no evidence was found for the formation of relatively stable Cr(IV) intermediates during the reactions of Cr(VI) with I in acidic aqueous solutions. The Cr(VI) complexes of I-III exist as tetrahedral CrO(3)(SR)](-) (IVa) species in the solid state, in solutions of aprotic solvents such as DMF, or in the gas phase (under ESMS conditions). In aqueous or alcohol solutions, reversible addition of a solvent molecule occurs, with the formation of five-coordinate species, CrO(3)(SR)L](-) (IVb, probably of a trigonal bipyramidal structure, L = H(2)O or MeOH), with a Cr-L bond length of 1.97(1) A (determined by XAFS data modeling). Complex IVb (L = H(2)O) is also formed (in an equilibrium mixture with CrO(4)](2)(-)) at the first stage of reduction of Cr(VI) by I in neutral aqueous solutions (as shown by global kinetic analysis of time-dependent UV-vis spectra). This is the first observation of a reversible ligand addition reaction in Cr(VI) complexes. The formation of IVb (rather than IVa, as thought before) during the reactions of Cr(VI) with I in aqueous solutions is likely to be important for the reactivity of Cr(VI) in cellular media, including DNA and protein damage and inhibition of protein tyrosine phosphatases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号