首页 | 官方网站   微博 | 高级检索  
     

Magnetic,Dielectric and Complex Impedance Properties of xBa_(0.95)Sr_(0.05)TiO_3–(1-x)BiFe_(0.9)Gd_(0.1)O_3Multiferroic Ceramics
摘    要:xBa_(0.95)Sr_(0.05)TiO_3–(1-x)BiFe_(0.9)Gd_(0.1)O_3x BST–(1-x)BFGO](x = 0.00, 0.10, 0.20 and 0.25) multiferroic ceramics were prepared by the standard solid-state reaction technique. Structural characterization was performed by X-ray diffraction. All the samples showed rhombohedral distorted perovskite structure. Surface morphology of the ceramics was studied by the field emission scanning electron microscope(FESEM). From the FESEM observation, the grain size was observed to be decreased with increasing BST content. Enhanced magnetic properties were observed in BFGO with the increase in BST content because of large lattice distortion. The complex initial permeability increased with the increasing of BST content. The study of dielectric properties showed that the dielectric constant increased, whereas dielectric loss decreased with increasing of BST content due to the reduction of oxygen vacancies. An analysis of the electric impedance and modulus with frequency was performed at different temperatures. Non-Debye-type relaxation processes occur in the compound which was confirmed from the nature of the Cole–Cole plot. The DC conductivity was found to increase with the rise in temperature which indicates the semiconducting behavior of the compound with characteristics of the negative temperature coefficient of resistance. The activation energy, responsible for the relaxation determined from the modulus spectra(0.246 eV), was found to be almost same as the value obtained from the impedance study(0.240 eV), indicating that charge carriers overcome the same energy barrier during relaxation. The frequency response of imaginary parts of electric impedance and modulus suggested that the relaxation in xB ST–(1-x)BFGO ceramics follows the same mechanism at various temperatures.

收稿时间:2016-03-28

Magnetic,Dielectric and Complex Impedance Properties of xBa0.95Sr0.05TiO3-(1 - x)BiFe0.9Gd0.1O3Multiferroic Ceramics
Authors:M J Miah  A K M Akther Hossain
Affiliation:1.Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh2 Department of Physics, Comilla University, Comilla, Bangladesh
Abstract:xBa0.95Sr0.05TiO3-(1 - x)BiFe0.9Gd0.1O3 xBST-(1 - x)BFGO] (x = 0.00, 0.10, 0.20 and 0.25) multiferroic ceramics were prepared by the standard solid-state reaction technique. Structural characterization was performed by X-ray diffraction. All the samples showed rhombohedral distorted perovskite structure. Surface morphology of the ceramics was studied by the field emission scanning electron microscope (FESEM). From the FESEM observation, the grain size was observed to be decreased with increasing BST content. Enhanced magnetic properties were observed in BFGO with the increase in BST content because of large lattice distortion. The complex initial permeability increased with the increasing of BST content. The study of dielectric properties showed that the dielectric constant increased, whereas dielectric loss decreased with increasing of BST content due to the reduction of oxygen vacancies. An analysis of the electric impedance and modulus with frequency was performed at different temperatures. Non-Debye-type relaxation processes occur in the compound which was confirmed from the nature of the Cole-Cole plot. The DC conductivity was found to increase with the rise in temperature which indicates the semiconducting behavior of the compound with characteristics of the negative temperature coefficient of resistance. The activation energy, responsible for the relaxation determined from the modulus spectra (0.246 eV), was found to be almost same as the value obtained from the impedance study (0.240 eV), indicating that charge carriers overcome the same energy barrier during relaxation. The frequency response of imaginary parts of electric impedance and modulus suggested that the relaxation in xBST-(1 - x)BFGO ceramics follows the same mechanism at various temperatures.
Keywords:Magnetic properties  Dielectric properties  Impedance spectroscopy  Activation energy  
本文献已被 CNKI 等数据库收录!
点击此处可从《金属学报(英文版)》浏览原始摘要信息
点击此处可从《金属学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号