首页 | 官方网站   微博 | 高级检索  
     

应变石墨烯纳米带谐振特性的分子动力学研究
引用本文:顾芳,张加宏,杨丽娟,顾斌.应变石墨烯纳米带谐振特性的分子动力学研究[J].物理学报,2011,60(5):56103-056103.
作者姓名:顾芳  张加宏  杨丽娟  顾斌
作者单位:(1)南京信息工程大学电子与信息工程学院,南京 210044; (2)南京信息工程大学数理学院,南京 210044; (3)宿迁学院基础部,宿迁 223800
基金项目:国家自然科学基金(批准号:10847147),南京信息工程大学科研基金(批准号:20080296),东南大学MEMS教育部重点实验室开放研究基金和南京信息工程大学微纳电子创新团队基金(批准号:N0575003411)资助的课题.
摘    要:从动势能转换与守恒原理出发,在微正则(NVE)系综下,采用COMPASS力场对石墨烯纳米带及其应变传感器的谐振特性进行了分子动力学模拟.研究发现,非线性响应主导了石墨烯纳米带的动态行为,而其超高的基波频率则与长度和边界条件密切相关;单轴拉伸应变对石墨烯纳米带基波频率的影响显著且强烈依赖于边界条件,四边固支型应变石墨烯纳米带具有更高的频移,其灵敏度可高达7800 Hz/nanostrain,远大于相同长度碳纳米管应变传感器的灵敏度;石墨烯纳米带及其应变传感器的谐振特性均与手性无关.本文所得结果表明,由于超低 关键词: 石墨烯纳米带 分子动力学 应变 基波频率

关 键 词:石墨烯纳米带  分子动力学  应变  基波频率
收稿时间:2010-07-20

Molecular dynamics simulation of resonance properties of strain graphene nanoribbons
Gu Fang,Zhang Jia-Hong,Yang Li-Juan,Gu Bin.Molecular dynamics simulation of resonance properties of strain graphene nanoribbons[J].Acta Physica Sinica,2011,60(5):56103-056103.
Authors:Gu Fang  Zhang Jia-Hong  Yang Li-Juan  Gu Bin
Affiliation:College of Math & Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China;College of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China;Department of Basic Courses, Suqian College, Suqian 223800, China;College of Math & Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract:Starting from the energy conversion and energy conservation law in the constant-NVE ensemble, the molecular dynamics method using the COMPASS force field was applied to investigate the dynamic properties of graphene nanoribbons (GNRs) together with the GNR-based strain sensors. The following results were obtained: (a) the nonlinear response dominates the dynamic behavior of GNRs, and their ultra-high fundamental frequencies are closely related with the length and boundary conditions; (b) the effect of uniaxial tensile strain on the fundamental frequencies of GNRs is significant and strongly depends on boundary conditions, and the GNR-based strain sensor clamped on four edges has a higher frequency shift, and its sensitivity is up to 7800 Hz / nanostrain, much higher than that of carbon nanotube-based strain sensor with the same length; (c) the resonant characteristics of GNRs and GNR-based strain sensors are insensitive to the chirality. The obtained results suggest that, through cutting the appropriate size and setting the boundary conditions, the GNRs could be used to design a new generation of nanoelectromechanical system (NEMS) resonators and strain sensors, owing to their ultra-low density and ultra-high fundamental frequencies as well as ultra-high sensitivity without considering the impact of chirality.
Keywords:graphene nanoribbon  molecular dynamics  strain  fundamental frequency
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号