首页 | 官方网站   微博 | 高级检索  
     


Ultrafast Electrochemical Trigger Drug Delivery Mechanism for Nanographene Micromachines
Authors:Bahareh Khezri,Seyyed Mohsen Beladi Mousavi,Ludmila Krej   ov  ,Zbyn   k Heger,Zden   k Sofer,Martin Pumera
Affiliation:Bahareh Khezri,Seyyed Mohsen Beladi Mousavi,Ludmila Krejčová,Zbyněk Heger,Zdeněk Sofer,Martin Pumera
Abstract:Nano/micromachines with autonomous motion are the frontier of nanotechnology and nanomaterial research. These self‐propelled nano/micromachines convert chemical energy obtained from their surroundings to propulsion. They have shown great potential in diagnostic and therapeutic applications. This work introduces a high‐speed tubular electrically conductive micromachine based on reduced nanographene oxide (n‐rGO) as a platform for drug delivery and platinum (Pt) as the catalytic inner layer. n‐rGO/Pt micromachines are loaded with doxorubicin (DOX) by a simple physical adsorption with a very high loading efficiency, displaying single‐ or multistrand wrapping of DOX monomers on the micromachine cylinders. More importantly, it is found that electron injection into DOX@n‐rGO/Pt micromachines via electrochemistry leads to expulsion of DOX from micromachines in motion within only a few seconds. An in vitro study confirms this efficient release mechanism in the presence of cancerous cells. The unique properties of the n‐rGO/Pt micromotor enable the effective management of DOX release at the tumor site and thus enhances the therapeutic efficiency and reduces the side toxicity toward the healthy tissue. These micromachine drug carriers combine the high loading capacity of conventional carbon‐based drug carriers with a fast and efficient electrochemical drug‐release mechanism.
Keywords:doxorubicin  drug delivery  electrochemical release  micromotors  reduced graphene oxide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号