首页 | 官方网站   微博 | 高级检索  
     


Hamiltonian treatment of the spherically symmetric einstein-Yang-Mills system
Authors:Patricio Cordero  Claudio Teitelboim
Abstract:A canonical formalism of the dynamics of interacting spherically symmetric Yang-Mills and gravitational fields is presented. The work is based on Dirac's technique for constrained hamiltonian systems. The gauge freedom of the Yang-Mills field is treated in the same footing with the coordinate transformation freedom of the gravitational field. In particular, the fixation of coordinates and the fixation of the internal gauge are achieved by totally similar techniques. Two classes of spherically symmetric motions are considered: (i) the class for which the Yang-Mills potentials themselves are spherically symmetric (“manifest spherical symmetry”). In this case the results are valid for an arbitrary gauge group; and (ii) the class for which, in the SO(3) gauge group, a rotation in physical space is compensated by a rotation of equal magnitude but opposite direction in isospin space (“spherical symmetry up to a gauge transformation”). For manifest spherical symmetry the problem amounts to effectively dealing with an abelian gauge group and the most general solution of the field equations turns out to be the Reissner-Nordström metric with a Coulomb field. For spherical symmetry up to a gauge transformation the problem is more interesting. the formalism contains then, besides the gravitational variables, three pairs of functions of the radial coordinate that describe the degrees of freedom of the Yang-Mills field. Two pairs of these functions can be combined into a complex field ψ and its conjugate. The hamiltonian is then invariant under r-dependent rotations in the complex ψ-plane. The third degree of freedom plays the role of a compensating field associated with this invariance under localized U(l) rotations. The compensating field can always be brought to zero by a gauge transformation. After this is done the gauge is completely fixed but the problem remains invariant under position independent rotations in the ψ plane. Static solutions of the field equations in this gauge are of the form ψ(r) = (r) exp (iΘ) with Θ independent of position. The particular case Θ = 0 corresponds to the Wu-Yang ansatz. A nontrivial static solution can be found in closed form. The Yang-Mills field is of the generalized Wu-Yang type with an extra electric term, and the metric is the Reissner-Nordström one. It is pointed out that a Higgs field can be easily introduced in the formalism. The addition of the Higgs field does not destroy the invariance of the Hamiltonian under r-dependent rotations in the ψ-plane. The conserved quantity associated with the invariance under ψ → exp (i(const))ψ coincides with the electric charge as defined by 't Hooft in a more general context.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号