首页 | 官方网站   微博 | 高级检索  
     


Shared hardware,high throughput implementation of 2D 4 × 4 and 8 × 8 integer transform for H.264/AVC high-profile coders
Authors:Honey Durga Tiwari  Meeturani Sharma  Yong Beom Cho
Affiliation:Department of Electronic Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
Abstract:Two-dimensional discrete cosine transforms are used in the core transformations in all profiles of the H.264/Advanced video coding (AVC) standard. In this paper, implementing the resource sharing of high throughput 4 × 4 and 8 × 8 forward and inverse integer transforms for high definition H.264 is presented. It is shown that the 4 × 4 forward/inverse transform can be obtained from 8 × 8 forward/inverse transform using selective data input and data arrangement at intermediate stages. Fast 8 × 8 forward and inverse transform is implemented using matrix decomposition and matrix operation such as Kronecker product and direct sum. The proposed implementation does not require any transpose memory and has a dual clocked pipeline structure. Compared with existing designs, the gate count is reduced by 27.7% in the proposed design. The maximum operating frequency of the proposed system is approx. 1.3 GHz, while the throughput is 7 G and 18.7 G pixels/s for 4 × 4 and 8 × 8 forward integer transforms, respectively. The proposed design can be used for real time H.264/AVC high definition processing owing to its high throughput and low hardware cost.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号