首页 | 官方网站   微博 | 高级检索  
     

岩质边坡断续裂隙阶梯状滑移模式及稳定性计算
引用本文:岑夺丰,黄达,黄润秋.岩质边坡断续裂隙阶梯状滑移模式及稳定性计算[J].岩土工程学报,2014,36(4):695-706.
作者姓名:岑夺丰  黄达  黄润秋
作者单位:1. 重庆大学土木工程学院,重庆 400045; 2. 重庆大学教育部山地城市建设与新技术重点实验室,重庆 400045; 3. 成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
基金项目:国家自然科学基金面上项目(117223); 国家自然科学基金重点项目(113075); 中央高校基本科研业务费重点项目(CDJZR12205501); 地质灾害防治与地质环境保护国家重点实验室开放基金项目(SKLGP2011K003)
摘    要:阶梯状滑移破坏是一类典型岩质边坡破坏失稳模式。在总结断续裂隙阶梯状滑移的岩质边坡地质结构特征的基础上,利用离散元二维颗粒流程序(PFC2D)模拟研究了边坡阶梯状滑移破裂模式及其演化过程。边坡岩桥可归纳为剪切贯通破坏、张拉贯通破坏及张–剪混合贯通破坏3类。通过岩石细观颗粒黏结力场、岩桥段应力及破裂贯通演化分析,揭示了重力作用下阶梯状滑移是从下而上岩桥逐个渐进性破裂贯通演化的过程,坡体后缘张裂纹发展贯通是下部坡体的牵拉作用造成;以缓倾角阶梯状平行裂隙边坡(岩桥倾角90°,裂隙倾角30°)为例,阶梯状滑移过程大致可分为坡体弹性稳定变形、下部岩桥贯通破坏、中上部岩桥贯通–后缘张裂、整体沿贯通面滑移共个阶段,其中第3个阶段坡体微断裂数急剧增加,为滑裂带扩展至贯通的临界失稳状态。基于滑移模式及其演化过程的认识,建立了岩桥剪切贯通、张拉贯通和张–剪混合贯通三类阶梯状滑移边坡稳定性计算理论模型,推导了考虑岩桥强度和贯通率的边坡安全系数极限平衡计算公式。

关 键 词:岩质边坡  阶梯状滑移  岩桥  边坡稳定性  二维颗粒流程序  
收稿时间:2013-06-28

Step-path failure mode and stability calculation of jointed rock slopes
CEN Duo-feng,HUANG Da,HUANG Run-qiu.Step-path failure mode and stability calculation of jointed rock slopes[J].Chinese Journal of Geotechnical Engineering,2014,36(4):695-706.
Authors:CEN Duo-feng  HUANG Da  HUANG Run-qiu
Affiliation:1. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China; 3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
Abstract:Step-path failure is a kind of typical instability mode in rock slopes. Based on the summary of geological structural features of jointed rock slopes, the step-path failure mode and evolution process are studied by using the discrete element method, particle flow code in two dimensions (PFC2D). Three rock bridge failure modes in slopes can be summarized: tensile coalescence, shear coalescence and mixed tensile-shear coalescence. Through the evolution analysis of the rock mesoscopic particle bond force vector field, stress state of rock bridges and rock bridge failure, the progressive step-path failure process that rock bridge fractures one by one from the bottom up under the action of gravity is revealed, and the tensile crack development in the trailing edge of slope is due to the traction of lower part of slope. Take the slope with shallow dipping step-path parallel fissures for example (dip angle of rock bridge is 90°, and that of fissure is 30°), the step-path failure process can be distributed into four stages: elastic steady deformation of slope, failure of the lower rock bridges, failure of the upper rock bridges and development of tensile crack in the trailing edge of the slope, and the overall slipping of the slope along the failure surface. It is the critical state of instability at stage No. three that slip band sufficiently extends with micro-cracks expanding dramatically. Based on the understanding of failure modes and evolution process, three slope stability models for the step-path failure by shear coalescence, tensile coalescence and mixed tensile-shear coalescence of rock bridges are established, and the limit equilibrium formulae for the safety factor of slopes considering strength and coalescence coefficient of rock bridges are deduced.
Keywords:rock slope  step-path failure  rock bridge  slope stability  PFC2D  
点击此处可从《岩土工程学报》浏览原始摘要信息
点击此处可从《岩土工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号